104 research outputs found

    Authenticated teleportation with one-sided trust

    Full text link
    We introduce a protocol for authenticated teleportation, which can be proven secure even when the receiver does not trust their measurement devices, and is experimentally accessible. We use the technique of self-testing from the device-independent approach to quantum information, where we can characterise quantum states and measurements from the exhibited classical correlations alone. First, we derive self-testing bounds for the Bell state and Pauli σX,σZ\sigma_X, \sigma_Z measurements, that are robust enough to be implemented in the lab. Then, we use these to determine a lower bound on the fidelity of an untested entangled state to be used for teleportation. Finally, we apply our results to propose an experimentally feasible protocol for one-sided device-independent authenticated teleportation. This can be interpreted as a first practical authentication of a quantum channel, with additional one-sided device-independence.Comment: published versio

    Practical sharing of quantum secrets over untrusted channels

    Full text link
    In this work we address the issue of sharing a quantum secret over untrusted channels between the dealer and players. Existing methods require entanglement over a number of systems which scales with the security parameter, quickly becoming impractical. We present protocols (interactive and a non-interactive) where single copy encodings are sufficient. Our protocols work for all quantum secret sharing schemes and access structures, and are implementable with current experimental set ups. For a single authorised player, our protocols act as quantum authentication protocols

    Adiabatic graph-state quantum computation

    Get PDF
    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any measurement-based quantum computation on a graph state with \emph{gflow} can be converted into an adiabatically driven holonomic computation, which we call \emph{adiabatic graph-state quantum computation} (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H˙\dot{H} as well as the degree of HH, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.Comment: 25 pages, 3 figure

    Scheme for constructing graphs associated with stabilizer quantum codes

    Full text link
    We propose a systematic scheme for the construction of graphs associated with binary stabilizer codes. The scheme is characterized by three main steps: first, the stabilizer code is realized as a codeword-stabilized (CWS) quantum code; second, the canonical form of the CWS code is uncovered; third, the input vertices are attached to the graphs. To check the effectiveness of the scheme, we discuss several graphical constructions of various useful stabilizer codes characterized by single and multi-qubit encoding operators. In particular, the error-correcting capabilities of such quantum codes are verified in graph-theoretic terms as originally advocated by Schlingemann and Werner. Finally, possible generalizations of our scheme for the graphical construction of both (stabilizer and nonadditive) nonbinary and continuous-variable quantum codes are briefly addressed.Comment: 42 pages, 12 figure

    Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup

    Full text link
    At its core a tt-design is a method for sampling from a set of unitaries in a way which mimics sampling randomly from the Haar measure on the unitary group, with applications across quantum information processing and physics. We construct new families of quantum circuits on nn-qubits giving rise to Δ\varepsilon-approximate unitary tt-designs efficiently in O(n3t12)O(n^3t^{12}) depth. These quantum circuits are based on a relaxation of technical requirements in previous constructions. In particular, the construction of circuits which give efficient approximate tt-designs by Brandao, Harrow, and Horodecki (F.G.S.L Brandao, A.W Harrow, and M. Horodecki, Commun. Math. Phys. (2016).) required choosing gates from ensembles which contained inverses for all elements, and that the entries of the unitaries are algebraic. We reduce these requirements, to sets that contain elements without inverses in the set, and non-algebraic entries, which we dub partially invertible universal sets. We then adapt this circuit construction to the framework of measurement based quantum computation(MBQC) and give new explicit examples of nn-qubit graph states with fixed assignments of measurements (graph gadgets) giving rise to unitary tt-designs based on partially invertible universal sets, in a natural way. We further show that these graph gadgets demonstrate a quantum speedup, up to standard complexity theoretic conjectures. We provide numerical and analytical evidence that almost any assignment of fixed measurement angles on an nn-qubit cluster state give efficient tt-designs and demonstrate a quantum speedup.Comment: 25 pages,7 figures. Comments are welcome. Some typos corrected in newest version. new References added.Proofs unchanged. Results unchange

    Random coding for sharing bosonic quantum secrets

    Get PDF
    We consider a protocol for sharing quantum states using continuous variable systems. Specifically we introduce an encoding procedure where bosonic modes in arbitrary secret states are mixed with several ancillary squeezed modes through a passive interferometer. We derive simple conditions on the interferometer for this encoding to define a secret sharing protocol and we prove that they are satisfied by almost any interferometer. This implies that, if the interferometer is chosen uniformly at random, the probability that it may not be used to implement a quantum secret sharing protocol is zero. Furthermore, we show that the decoding operation can be obtained and implemented efficiently with a Gaussian unitary using a number of single-mode squeezers that is at most twice the number of modes of the secret, regardless of the number of players. We benchmark the quality of the reconstructed state by computing the fidelity with the secret state as a function of the input squeezing.Comment: Updated figure 1, added figure 2, closer to published versio
    • 

    corecore