We introduce a protocol for authenticated teleportation, which can be proven
secure even when the receiver does not trust their measurement devices, and is
experimentally accessible. We use the technique of self-testing from the
device-independent approach to quantum information, where we can characterise
quantum states and measurements from the exhibited classical correlations
alone. First, we derive self-testing bounds for the Bell state and Pauli
σX,σZ measurements, that are robust enough to be implemented in
the lab. Then, we use these to determine a lower bound on the fidelity of an
untested entangled state to be used for teleportation. Finally, we apply our
results to propose an experimentally feasible protocol for one-sided
device-independent authenticated teleportation. This can be interpreted as a
first practical authentication of a quantum channel, with additional one-sided
device-independence.Comment: published versio