11 research outputs found

    Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: in vitro and in ex vivo studies

    Get PDF
    In diabetic patients, the presence of neuropathy, peripheral vascular diseases and ischemia, leads to the formation of foot ulcerations with a higher risk of infection because the normal response to bacterial infection is missing. In the aim to control and treat diabetic foot ulcerations (DFUs), wound dressings that are able to absorb exudate, to prevent infections, and to promote wound healing are needed. For this reason, the aim of the present research was to synthetize a biocompatible hydrogel (called HyDrO-DiAb) composed of carboxymethylcellulose loaded with silver nanoparticles (AgNPs) for the treatment of diabetic foot ulcers. In this study, AgNPs were obtained by a green synthesis and, then, were dissolved in a CMC hydrogel that, after a freeze drying process, becomes a flexible and porous structure. The in vitro and in ex vivo wound healing activity of the obtained HyDrO-DiAb hydrogel was evaluatedPeer ReviewedPostprint (published version

    Controlled Release of 5-FU from Chi–DHA Nanoparticles Synthetized with Ionic Gelation Technique: Evaluation of Release Profile Kinetics and Cytotoxicity Effect

    Get PDF
    The ionic gelation technique allows us to obtain nanoparticles able to function as carriers for hydrophobic anticancer drugs, such as 5-fluoruracil (5-FU). In this study, reticulated chitosan– docosahexaenoic acid (Chi–DHAr) nanoparticles were synthesized by using a chemical reaction between amine groups of chitosan (Chi) and carboxylic acids of docosahexaenoic acid (DHA) and the presence of a link between Chi and DHA was confirmed by FT-IR, while the size and morphology of the obtained Chi-DHAr nanoparticles was evaluated with dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. Drug-loading content (DLC) and drug-loading efficiency (DLE) of 5-FU in Chi-DHAr nanoparticles were 33.74 ± 0.19% and 7.9 ± 0.26%, respectively, while in the non-functionalized nanoparticles (Chir + 5FU), DLC, and DLE were in the ranges of 23.73 ± 0.14%, 5.62%, and 0.23%, respectively. The in vitro release profile, performed in phosphate buffer saline (PBS, pH 7.4) at 37 °C, indicated that the synthetized Chi–DHAr nanoparticles provided a sustained release of 5-FU. Based on the obtained regression coefficient value (R2), the first order kinetic model provided the best fit for both Chir and Chi-DHAr nanoparticles. Finally, cytotoxicity studies of chitosan, 5-FU, Chir, Chir + 5-FU, Chi-DHAr, and Chi-DHAr + 5-FU nanoparticles were conducted. Overall, Chi-DHAr nanoparticles proved to be much more biocompatible than Chir nanoparticles while retaining the ability to release the drug with high efficiency, especially towards specific types of cancerous cells

    Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release

    No full text
    The aim of the present study was the development of a “smart bandage” for the topical administration of diclofenac, in the treatment of localized painful and inflammatory conditions, incorporating Molecularly Imprinted Polymers (MIPs) for the controlled release of this anti-inflammatory drug. For this purpose, MIP spherical particles were synthesized by precipitation polymerization, loaded with the therapeutic agent and incorporated into the bandage surface. Batch adsorption binding studies were performed to investigate the adsorption isotherms and kinetics and the selective recognition abilities of the synthesized MIP. In vitro diffusion studies were also carried out using Franz cells and the obtained results were reported as percentage of the diffused dose, cumulative amount of diffused drug, steady-state drug flux and permeability coefficient. Moreover, the biocompatibility of the developed device was evaluated using the EPISKIN™ model. The Scatchard analysis indicated that the prepared MIP is characterized by the presence of specific binding sites for diclofenac, which are not present in the corresponding non-imprinted polymer, and the obtained results confirmed both the ability of the prepared bandage to prolong the drug release and the absence of skin irritation reactions. Therefore, these results support the potential application of the developed “smart bandage” as topical device for diclofenac sustained release

    Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release

    No full text
    The aim of the present study was the development of a “smart bandage” for the topical administration of diclofenac, in the treatment of localized painful and inflammatory conditions, incorporating Molecularly Imprinted Polymers (MIPs) for the controlled release of this anti-inflammatory drug. For this purpose, MIP spherical particles were synthesized by precipitation polymerization, loaded with the therapeutic agent and incorporated into the bandage surface. Batch adsorption binding studies were performed to investigate the adsorption isotherms and kinetics and the selective recognition abilities of the synthesized MIP. In vitro diffusion studies were also carried out using Franz cells and the obtained results were reported as percentage of the diffused dose, cumulative amount of diffused drug, steady-state drug flux and permeability coefficient. Moreover, the biocompatibility of the developed device was evaluated using the EPISKIN™ model. The Scatchard analysis indicated that the prepared MIP is characterized by the presence of specific binding sites for diclofenac, which are not present in the corresponding non-imprinted polymer, and the obtained results confirmed both the ability of the prepared bandage to prolong the drug release and the absence of skin irritation reactions. Therefore, these results support the potential application of the developed “smart bandage” as topical device for diclofenac sustained release

    Molecularly Imprinted Polymers (MIPs) as Theranostic Systems for Sunitinib Controlled Release and Self-Monitoring in Cancer Therapy

    No full text
    Cytotoxic agents that are used conventionally in cancer therapy present limitations that affect their efficacy and safety profile, leading to serious adverse effects. In the aim to overcome these drawbacks, different approaches have been investigated and, among them, theranostics is attracting interest. This new field of medicine combines diagnosis with targeted therapy; therefore, the aim of this study was the preparation and characterization of Molecularly Imprinted Polymers (MIPs) selective for the anticancer drug Sunitinib (SUT) for the development of a novel theranostic system that is able to integrate the drug controlled release ability of MIPs with Rhodamine 6G as a fluorescent marker. MIPs were synthesized by precipitation polymerization and then functionalized with Rhodamine 6G by radical grafting. The obtained polymeric particles were characterized in terms of particles size and distribution, ξ-potential and fluorescent, and hydrophilic properties. Moreover, adsorption isotherms and kinetics and in vitro release properties were also investigated. The obtained binding data confirmed the selective recognition properties of MIP, revealing that SUT adsorption better fitted the Langmuir model, while the adsorption process followed the pseudo-first order kinetic model. Finally, the in vitro release studies highlighted the SUT controlled release behavior of MIP, which was well fitted with the Ritger-Peppas kinetic model. Therefore, the synthesized fluorescent MIP represents a promising material for the development of a theranostic platform for Sunitinib controlled release and self-monitoring in cancer therapy

    Molecularly Imprinted Microrods via Mesophase Polymerization

    No full text
    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology

    Interconnected PolymerS TeChnology (IPSTiC): An Effective Approach for the Modulation of 5α-Reductase Activity in Hair Loss Conditions

    No full text
    Hair loss represents a condition that adversely affects the social life of patients. The most common cause is androgenetic alopecia (AGA), which is a genetically determined progressive hair-loss condition involving 5α-reductase. In this study, a novel anti-baldness agent based on Interconnected PolymerS TeChnology (IPSTiC), which is an effective strategy for the delivery of bioactive molecules, was developed. This product (IPSTiC patch hair) is based on a polymeric blend consisting of high molecular weight hyaluronic acid and soybean proteins and is able to improve efficacy and stability of bioactive ingredients such as Origanum vulgare leaf extract, Camellia Sinensis leaf extract, and Capsicum Annuum fruit extract. The efficacy of the developed anti-baldness agent was investigated by performing several tests including NO radical and 5α-reductase inhibition assays, stability studies under different conditions, and in vitro diffusion studies using Franz cells. The biocompatibility of IPSTiC patch hair was also evaluated by in vitro analysis of the pro-sensitising potential and EPISKIN model. The obtained results confirmed both the efficacy and safety of IPSTiC patch hair supporting the potential use of this product in the topical treatment of AGA

    Calabrian Goji vs. Chinese Goji: A Comparative Study on Biological Properties

    No full text
    Lycium barbarum (Goji) fruits are mainly cultivated in northwestern China and are well known for their beneficial and healthy effects. In this work, the biological and functional properties of Calabrian Goji extract, obtained from Goji berries cultivated in the Sibari Plain (in the Italian region of Calabria), were demonstrated. In order to evaluate the use of this extract as a food supplement for cognitive and mental disorders, the quantification of Carotenoids as Zeaxanthin equivalents was made. The antioxidant activity was investigated by evaluating the scavenging properties against 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the ORAC (Oxygen Radical Absorbance Capacity) assay. The inhibition of lipid peroxidation was quantified by bleaching test and the ability to inhibit acetylcholinesterase enzyme and to scavenge nitric oxide radical was also evaluated. All the results were compared to those obtained from a Chinese Goji extract used as a reference. Based on the reported data, Calabrian Goji might be used as a food supplement with a possible application in cognitive disorders, mental impairments and other neurodegenerative diseases, due to its biological properties and the high levels of Carotenoids

    Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence?

    No full text
    Background: Melanins are high molecular weight pigments responsible for the mammalian skin and hair colour and play a key role in skin protection from UV radiation; however, their overproduction and excessive accumulation lead to pigmentation problems including melasma, freckles, uneven colouring, and age spots. Therefore, the modulation of melanin synthesis represents a critical issue in medicine and cosmetology. In the present study, an innovative polymeric antioxidant to be used as skin whitening agent is developed by the conjugation of dextran with rosmarinic acid. Methods: Dextran-rosmarinic acid conjugates (DEX-RA) were synthesized in a one-pot method starting from Origanum vulgare aqueous leaf extract and dextran. The total polyphenol content and the antioxidant activity were assessed by Folin-Ciocalteau assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and bleaching tests, respectively. The efficacy of DEX-RA was evaluated by inhibition of tyrosinase activity, in vitro diffusion and stability studies and in vivo studies. The biocompatibility of the conjugates was investigated by 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazoliumbromide (MTT) and EPISKIN™ model. Results: Efficacy and safety studies confirmed the antioxidant and tyrosinase inhibitory activities and the biocompatibility of the synthesized conjugates. Conclusion: The polymeric conjugates, comparing to the free antioxidant, show a long-lasting efficacy combined to an enhanced stability resulting in an improved performance of the cosmetic formulations prepared using this innovative whitening agent as a bioactive ingredient
    corecore