44 research outputs found

    High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast.

    Get PDF
    In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination

    High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast

    Get PDF
    The Saccharomyces cerevisae RAD3 gene is the homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Some mutant alleles of RAD3 (rad3-101 and rad3-102) have partial defects in DNA repair and a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. The systems previously used to characterize the hyper-Rec phenotype of rad3 strains do not detect the reciprocal products of mitotic recombination. We have further characterized these events using a system in which the reciprocal products of mitotic recombination are recovered. Both rad3-101 and rad3-102 elevate the frequency of reciprocal crossovers about 100-fold. Mapping of these events shows that three-quarters of these crossovers reflect DSBs formed at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. We mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister-chromatid recombination, are a major source of mitotic recombination between homologous chromosomes.España, Ministerio de Economía y Competitividad BFU2010-16372España, Ministerio de Economía y Competitividad BFU2013-42918-

    Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes.

    Get PDF
    In eukaryotes, a family of related protein kinases (the ATM family) is involved in regulating cellular responses to DNA damage and telomere length. In the yeast Saccharomyces cerevisiae, two members of this family, TEL1 and MEC1, have functionally redundant roles in both DNA damage repair and telomere length regulation. Strains with mutations in both genes are very sensitive to DNA damaging agents, have very short telomeres, and undergo cellular senescence. We find that strains with the double mutant genotype also have approximately 80-fold increased rates of mitotic recombination and chromosome loss. In addition, the tel1 mec1 strains have high rates of telomeric fusions, resulting in translocations, dicentrics, and circular chromosomes. Similar chromosome rearrangements have been detected in mammalian cells with mutations in ATM (related to TEL1) and ATR (related to MEC1) and in mammalian cells that approach cell crisis

    The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ

    Get PDF
    Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme

    The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae

    Get PDF
    The rate of meiotic recombination in the yeast Saccharomyces cerevisiae varies widely in different regions of the genome with some genes having very high levels of recombination (hotspots). A variety of experiments done in yeast suggest that hotspots are a feature of chromatin structure rather than a feature of primary DNA sequence. We examined the effects of mutating a variety of enzymes that affect chromatin structure on the recombination activity of the well-characterized HIS4 hotspot including the Set2p and Dot1p histone methylases, the Hda1p and Rpd3p histone deacetylases, the Sin4p global transcription regulator, and a deletion of one of the two copies of the genes encoding histone H3–H4. Loss of Set2p or Rpd3p substantially elevated HIS4 hotspot activity, and loss of Hda1p had a smaller stimulatory effect; none of the other alterations had a significant effect. The increase of HIS4 hotspot activity in set2 and rpd3 strains is likely to be related to the recent finding that histone H3 methylation by Set2p directs deacetylation of histones by Rpd3p

    Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae

    Get PDF
    Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast

    A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae

    Get PDF
    Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle

    Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.

    Get PDF
    The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. Recent physical studies suggest that some recombination events involve heterodupex formation by a mechanism, synthesis-dependent strand annealing (SDSA), that is inherently asymmetric with respect to the DSB site and that leads exclusively to noncrossovers of flanking markers. Below, we demonstrate that many of the recombination events initiated at the HIS4 recombination hotspot are consistent with a variant of the DSBR model in which the extent of heteroduplex on one side of the DSB site is much greater than that on the other. Events that include only one flanking marker in the heteroduplex (unidirectional events) are usually resolved as noncrossovers, whereas events that include both flanking markers (bidirectional events) are usually resolved as crossovers. The unidirectional events may represent SDSA, consistent with the conclusions of others, although other possibilities are not excluded. We also show that the level of recombination reflects the integration of events initiated at several different DSB sites, and we identify a subset of gene conversion events that may involve break-induced replication (BIR) or repair of a double-stranded DNA gap

    Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence.

    No full text
    G-quadruplex or G4 DNA is a non-B secondary DNA structure that comprises a stacked array of guanine-quartets. Cellular processes such as transcription and replication can be hindered by unresolved DNA secondary structures potentially endangering genome maintenance. As G4-forming sequences are highly frequent throughout eukaryotic genomes, it is important to define what factors contribute to a G4 motif becoming a hotspot of genome instability. Using a genetic assay in Saccharomyces cerevisiae, we previously demonstrated that a potential G4-forming sequence derived from a guanine-run containing immunoglobulin switch Mu (Sμ) region becomes highly unstable when actively transcribed. Here we describe assays designed to survey spontaneous genome rearrangements initiated at the Sμ sequence in the context of large genomic areas. We demonstrate that, in the absence of Top1, a G4 DNA-forming sequence becomes a strong hotspot of gross chromosomal rearrangements and loss of heterozygosity associated with mitotic recombination within the ∼ 20 kb or ∼ 100 kb regions of yeast chromosome V or III, respectively. Transcription confers a critical strand bias since genome rearrangements at the G4-forming Sμ are elevated only when the guanine-runs are located on the non-transcribed strand. The direction of replication and transcription, when in a head-on orientation, further contribute to the elevated genome instability at a potential G4 DNA-forming sequence. The implications of our identification of Top1 as a critical factor in suppression of instability associated with potential G4 DNA-forming sequences are discussed
    corecore