45 research outputs found

    Plastic deformation of metallic glasses: Size of shear transformation zones from molecular dynamics simulations

    Get PDF
    Plastic deformation in metallic glasses well below their glass transition temperatures Tg occurs spatially heterogeneously within highly localized regions, termed shear transformation zones (STZs). Yet, their size and the number of atoms involved in a local shear event, remains greatly unclear. With the help of classical molecular dynamics (MD) computer simulations on plastic deformation of the model glass CuTi during pure shearing, we address this issue by evaluating correlations in atomic-scale plastic displacements, viz. the displacement correlation function. From the correlation length, a universal diameter of about 15 Å, or, equivalently, approximately 120 atoms is derived for a variety of conditions, such as variable strains, strain rates, temperatures, and boundary conditions. Our findings are consistent with a recent model proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)]

    Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces

    Get PDF
    Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes’ surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo

    The impact of jamming on boundaries of collectively moving weak-interacting cells

    Get PDF
    Collective cell migration is an important feature of wound healing, as well as embryonic and tumor development. The origin of collective cell migration is mainly intercellular interactions through effects such as a line tension preventing cells from detaching from the boundary. In contrast, in this study, we show for the first time that the formation of a constant cell front of a monolayer can also be maintained by the dynamics of the underlying migrating single cells. Ballistic motion enables the maintenance of the integrity of the sheet, while a slowed down dynamics and glass-like behavior cause jamming of cells at the front when two monolayers—even of the same cell type—meet. By employing a velocity autocorrelation function to investigate the cell dynamics in detail, we found a compressed exponential decay as described by the Kohlrausch–William–Watts function of the form C(δx)t ∼ exp (−(x/x0(t))β(t)), with 1.5 6 β(t) 6 1.8. This clearly shows that although migrating cells are an active, non-equilibrium system, the cell monolayer behaves in a glass-like way, which requires jamming as a part of intercellular interactions. Since it is the dynamics which determine the integrity of the cell sheet and its front for weakly interacting cells, it becomes evident why changes of the migratory behavior during epithelial to mesenchymal transition can result in the escape of single cells and metastasis

    Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications

    Get PDF
    Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron–material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, (Formula presented.) -potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material’s cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring

    Thermal instability of cell nuclei

    Get PDF
    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70 °C. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55 °C. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs

    Validity of temperature and time equivalence in metallic glasses during shear deformation

    Get PDF
    Competing internal and external time scales, which are determined by temperature and experimental sampling time—viz., reciprocal frequency—respectively, are essentials for understanding the physics of glasses and the glass transition. A temperature increase should ideally affect thermally activated phenomena in a similar manner as an increase of sampling time at constant temperature. We investigate the validity of this empirical principle by its manifestations in mechanical properties—viz., the temperature and strain rate dependence of the shear modulus and yield stress of a CuTi model glass in molecular dynamics computer simulations. In equivalence to the temperature-dependent glass transition, we identify a shear-rate-dependent glass transition below a certain threshold. Beyond that, deviations occur in a highly non-Newtonian regime
    corecore