1,730 research outputs found

    Second fundamental form of the Prym map in the ramified case

    Full text link
    In this paper we study the second fundamental form of the Prym map Pg,r:Rg,r→Ag−1+rδP_{g,r}: R_{g,r} \rightarrow {\mathcal A}^{\delta}_{g-1+r} in the ramified case r>0r>0. We give an expression of it in terms of the second fundamental form of the Torelli map of the covering curves. We use this expression to give an upper bound for the dimension of a germ of a totally geodesic submanifold, and hence of a Shimura subvariety of Ag−1+rδ{\mathcal A}^{\delta}_{g-1+r}, contained in the Prym locus.Comment: To appear in Galois Covers, Grothendieck-Teichmueller Theory and Dessins d'Enfants - Interactions between Geometry, Topology, Number Theory and Algebra. Springer Proceedings in Mathematics & Statistics. arXiv admin note: text overlap with arXiv:1711.0342

    Weak proton capture on 3He

    Get PDF
    The astrophysical S-factor for the proton weak capture on 3He is calculated with correlated-hyperspherical-harmonics bound and continuum wave functions corresponding to realistic Hamiltonians consisting of the Argonne v14 or Argonne v18 two-nucleon and Urbana-VIII or Urbana-IX three-nucleon interactions. The nuclear weak charge and current operators have vector and axial-vector components, that include one- and many-body terms. All possible multipole transitions connecting any of the p 3He S- and P-wave channels to the 4He bound state are considered. The S-factor at a p 3He center-of-mass energy of 10 keV, close to the Gamow-peak energy, is predicted to be 10.1 10^{-20} keV b with the AV18/UIX Hamiltonian, a factor of about 4.5 larger than the value adopted in the standard solar model. The P-wave transitions are found to be important, contributing about 40 % of the calculated S-factor. The energy dependence is rather weak: the AV18/UIX zero-energy S-factor is 9.64 10^{-20} keV b, only 5 % smaller than the 10 keV result quoted above. The model dependence is also found to be weak: the zero-energy S-factor is calculated to be 10.2 10^{-20} keV b with the older AV14/UVIII model, only 6 % larger than the AV18/UIX result. Our best estimate for the S-factor at 10 keV is therefore (10.1 \pm 0.6) 10^{-20} keV b, when the theoretical uncertainty due to the model dependence is included. This value for the calculated S-factor is not as large as determined in fits to the Super-Kamiokande data in which the hep flux normalization is free. However, the precise calculation of the S-factor and the consequent absolute prediction for the hep neutrino flux will allow much greater discrimination among proposed solar neutrino oscillation solutions.Comment: 54 pages RevTex file, 6 PostScript figures, submitted to Phys. Rev.

    The nuclear matter equation of state with consistent two- and three-body perturbative chiral interactions

    Get PDF
    We compute the energy per particle of infinite symmetric nuclear matter from chiral N3LO (next-to-next-to-next-to-leading order) two-body potentials plus N2LO three-body forces. The low-energy constants of the chiral three-nucleon force that cannot be constrained by two-body observables are fitted to reproduce the triton binding energy and the 3H-3He Gamow-Teller transition matrix element. In this way, the saturation properties of nuclear matter are reproduced in a parameter-free approach. The equation of state is computed up to third order in many-body perturbation theory, with special emphasis on the role of the third-order particle-hole diagram. The dependence of these results on the cutoff scale and regulator function is studied. We find that the inclusion of three-nucleon forces consistent with the applied two-nucleon interaction leads to a reduced dependence on the choice of the regulator only for lower values of the cutoff.Comment: 9 pages, 12 figures, 3 tables, to be published in Physical Review C. arXiv admin note: text overlap with arXiv:1209.553

    Chiral nucleon-nucleon forces in nuclear structure calculations

    Get PDF
    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.Comment: 10 pages, 8 figures, plenary talk presented at "Nucleus-Nucleus 2015" Conference, 21-26 June 2015, Catania, to be published in the "Conference Proceedings" Series of the Italian Physical Societ

    The parity-violating asymmetry in the 3He(n,p)3H reaction

    Full text link
    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.Comment: 19 pages, 15 tables, revtex

    Antibody-drug conjugates (ADC) against cancer stem-like cells (CSC) - Is there still room for optimism?

    Get PDF
    Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations
    • …
    corecore