4 research outputs found

    An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    Get PDF
    Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50 ∘ C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55 ∘ C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as = 27.5 ± 4.33 mg/mL, max = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol

    A study on the use of strain-specific and homologous promoters for heterologous expression in industrial Saccharomyces cerevisiae strains

    No full text
    Abstract Polymorphism is well known in Saccharomyces cerevisiae strains used for different industrial applications, however little is known about its effects on promoter efficiency. In order to test this, five different promoters derived from an industrial and a laboratory (S288c) strain were used to drive the expression of eGFP reporter gene in both cells. The ADH1 promoter (P ADH1 ) in particular, which showed more polymorphism among the promoters analyzed, also exhibited the highest differences in intracellular fluorescence production. This was further confirmed by Northern blot analysis. The same behavior was also observed when the gene coding for secreted α-amylase from Cryptococcus flavus was placed under the control of either P ADH1 . These results underline the importance of the careful choice of the source of the promoter to be used in industrial yeast strains for heterologous expression
    corecore