36 research outputs found

    Mitochondrial Superoxide Dismutase Overexpression and Low Oxygen Conditioning Hormesis Improve the Performance of Irradiated Sterile Males

    Get PDF
    The Sterile Insect Technique (SIT) is a successful autocidal control method that uses ionizing radiation to sterilize insects. However, irradiation in normal atmospheric conditions can be damaging for males, because irradiation generates substantial biological oxidative stress that, combined with domestication and mass-rearing conditions, may reduce sterile male sexual competitiveness and quality. In this study, biological oxidative stress and antioxidant capacity were experimentally manipulated in Anastrepha suspensa using a combination of low-oxygen conditions and transgenic overexpression of mitochondrial superoxide dismutase (SOD2) to evaluate their role in the sexual behavior and quality of irradiated males. Our results showed that SOD2 overexpression enhances irradiated insect quality and improves male competitiveness in leks. However, the improvements in mating performance were modest, as normoxia-irradiated SOD2 males exhibited only a 22% improvement in mating success compared to normoxia-irradiated wild type males. Additionally, SOD2 overexpression did not synergistically improve the mating success of males irradiated in either hypoxia or severe hypoxia. Short-term hypoxic and severe-hypoxic conditioning hormesis, per se, increased antioxidant capacity and enhanced sexual competitiveness of irradiated males relative to non-irradiated males in leks. Our study provides valuable new information that antioxidant enzymes, particularly SOD2, have potential to improve the quality and lekking performance of sterile males used in SIT programs

    Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sterile insect technique (SIT) is an environment-friendly method used in area-wide pest management of the Mediterranean fruit fly <it>Ceratitis capitata </it>(Wiedemann; Diptera: Tephritidae). Ionizing radiation used to generate reproductive sterility in the mass-reared populations before release leads to reduction of competitiveness.</p> <p>Results</p> <p>Here, we present a first alternative reproductive sterility system for medfly based on transgenic embryonic lethality. This system is dependent on newly isolated medfly promoter/enhancer elements of cellularization-specifically-expressed genes. These elements act differently in expression strength and their ability to drive lethal effector gene activation. Moreover, position effects strongly influence the efficiency of the system. Out of 60 combinations of driver and effector construct integrations, several lines resulted in larval and pupal lethality with one line showing complete embryonic lethality. This line was highly competitive to wildtype medfly in laboratory and field cage tests.</p> <p>Conclusion</p> <p>The high competitiveness of the transgenic lines and the achieved 100% embryonic lethality causing reproductive sterility without the need of irradiation can improve the efficacy of operational medfly SIT programs.</p

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Molecular tools to create new strains for mosquito sexing and vector control

    No full text
    Abstract Vector control programs based on population reduction by matings with mass-released sterile insects require the release of only male mosquitoes, as the release of females, even if sterile, would increase the number of biting and potentially disease-transmitting individuals. While small-scale releases demonstrated the applicability of sterile males releases to control the yellow fever mosquito Aedes aegypti, large-scale programs for mosquitoes are currently prevented by the lack of efficient sexing systems in any of the vector species. Different approaches of sexing are pursued, including classical genetic and mechanical methods of sex separation. Another strategy is the development of transgenic sexing systems. Such systems already exist in other insect pests. Genome modification tools could be used to apply similar strategies to mosquitoes. Three major tools to modify mosquito genomes are currently used: transposable elements, site-specific recombination systems, and genome editing via TALEN or CRISPR/Cas. All three can serve the purpose of developing sexing systems and vector control strains in mosquitoes in two ways: first, via their use in basic research. A better understanding of mosquito biology, including the sex-determining pathways and the involved genes can greatly facilitate the development of sexing strains. Moreover, basic research can help to identify other regulatory elements and genes potentially useful for the construction of transgenic sexing systems. Second, these genome modification tools can be used to apply the gained knowledge to build and test mosquito sexing strains for vector control

    High-throughput analysis of insecticides on malaria vectors using liquid chromatography tandem mass spectrometry.

    No full text
    BACKGROUND:Different setups and protocols have been developed for investigating insecticide effects on Anopheles (An.) mosquitoes, vectors of malaria. However, chemical uptake resulting from their tarsal contact with insecticide-treated material has seldom been investigated. To address the challenges encountered in the interpretation of bioassay data, a high throughput method for chemical analysis on malaria vectors was developed and validated for five selected insecticides including alpha-cypermethrin (aCYP), deltamethrin (DM), etofenprox (EPX), permethrin (PM), pirimiphos-methyl (PPM). METHODS:The method includes a single chemical extraction step via an ultrasound probe on mosquito samples and analysis via liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-MS/MS). The protocol was established for two malaria vector species, Anopheles gambiae senso stricto (s.s.) and An. stephensi, both males and females. Recovery rates ranged from 70 to 100% without any influence of sex or species. The method was efficiently applied to female An. gambiae s.s. of the KISUMU1 reference strain, after susceptibility tests using the World Health Organization's standard protocol. RESULTS:Susceptibility tests revealed 13.4-18.4 minutes knockdown times for 50% mosquitoes during exposure to EPX and pyrethroids. The mortality rates 24 hours post-exposure to insecticides were mostly 99-100%, except in two PM and three PPM assays suggesting possible or confirmed resistance to these insecticides. The mean insecticide uptake in dead mosquitoes ranged from 23 pg (aCYP) to 1812 pg (EPX) per specimen. However, the mean uptake in survivors to PM and PPM was reduced by at least 25%, suggesting that acute doses were not achieved in these specimens during bioassays. CONCLUSIONS:The developed and validated UHPLC-MS/MS method could be used to address some limitations of bioassays or to assess the penetration of insecticides in mosquito matrix with reference to cuticle thickness and other insecticide resistance mechanisms

    Genetic breakdown of a Tet-off conditional lethality system for insect population control

    No full text
    Insect population control using conditional lethal systems could break down due to spontaneous mutations that render the system ineffective. Here the authors analyse the structure and frequency of such mutations in Drosophila and suggest the use of dual lethality systems to mitigate their survival

    Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata

    No full text
    Abstract Background The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. Results An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. Conclusions Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors

    Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata

    No full text
    Insect transgenesis is mainly based on the random genomic integration of DNA fragments embedded into non-autonomous transposable elements. Once a random insertion into a specific location of the genome has been identified as particularly useful with respect to transgene expression, the ability to make the insertion homozygous, and lack of fitness costs, it may be advantageous to use that location for further modification. Here we describe an efficient method for the modification of previously inserted transgenes by the use of the site-specific integration system from phage phiC31 in a tephritid pest species, the Mediterranean fruit fly Ceratitis capitata. First, suitable transgenic strains with randomly integrated attP landing sites within transposon-based vectors were identified by molecular and functional characterization. Second, donor plasmids containing an attB site, with additional markers, and transposon ends were integrated into attP sites by phiC31 integrase-mediated recombination. Third, transposase-encoding ‘jumpstarter’ strains were created and mated to transgenic strains resulting in the postintegrational excision of transposon ends, which left stably integrated transgene insertions that could not be remobilized. This three-step integration and stabilization system will allow the combination of several transgene-encoded advantageous traits at evaluated genomic positions to generate optimized strains for pest control that minimize environmental concerns
    corecore