206 research outputs found

    Mechanical ventilation and volutrauma: study in vivo of a healthy pig model

    Get PDF
    Mechanical ventilation is essential in intensive care units. However, it may itself induce lung injury. Current studies are based on rodents, using exceptionally large tidal volumes for very short periods, often after a "priming" pulmonary insult. Our study deepens a clinically relevant large animal model, closely resembling human physiology and the ventilator setting used in clinic settings. Our aim was to evaluate the pathophysiological mechanisms involved in alveolo/capillary barrier damage due to mechanical stress in healthy subjects. We randomly divided 18 pigs (sedated with medetomidine/tiletamine-zolazepam and anesthetised with thiopental sodium) into three groups (n=6): two were mechanically ventilated (tidal volume of 8 or 20 ml/kg), the third breathed spontaneously for 4 hours, then animals were sacrifi ced (thiopental overdose). We analyzed every 30' hemogasanalysis and the main circulatory and respiratory parameters. Matrix gelatinase expression was evaluated on bronchoalveolar lavage fl uid after surgery and before euthanasia. On autoptic samples we performed zymographic analysis of lung, kidney and liver tissues and histological examination of lung. Results evidenced that high V T evoked profound alterations of lung mechanics and structure, although low V T strategy was not devoid of side effects, too. Unexpectedly, also animals that were spontaneously breathing showed a worsening of the respiratory functions

    Pathogen-Driven Selection in the Human Genome

    Get PDF

    Both selective and neutral processes drive GC content evolution in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait.</p> <p>Results</p> <p>Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs), as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC) has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations.</p> <p>Conclusion</p> <p>We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.</p

    A complex selection signature at the human AVPR1B gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vasopressin receptor type 1b (<it>AVPR1B</it>) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common <it>AVPR1B </it>haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses.</p> <p>Results</p> <p>Here we have analyzed the two exons of the gene and the data we present suggest that <it>AVPR1B </it>has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection.</p> <p>Conclusion</p> <p>Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution.</p

    Alternative sources of neurons and glia from somatic stem cells.

    Get PDF
    Stem cell populations have been shown to be extremely versatile: they can generate differentiated cells specific to the tissue in which they reside and descendents that are of different germ layer origin. This raises the possibility of obtaining neuronal cells from new biological source of the same adult human subjects. In this study, we found that epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cell-like population isolated from several newborn and adult mouse tissues: muscle and hematopoietic tissues. This population, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Brain engraftment of the somatic-derived neural stem cells generated neuronal phenotypes, demonstrating the great plasticity of these cells with potential clinical application

    Intraarterial Injection of Muscle-Derived Cd34+Sca-1+ Stem Cells Restores Dystrophin in mdx Mice

    Get PDF
    Duchenne muscular dystrophy is a lethal recessive disease characterized by widespread muscle damage throughout the body. This increases the difficulty of cell or gene therapy based on direct injections into muscles. One way to circumvent this obstacle would be to use circulating cells capable of homing to the sites of lesions. Here, we showed that stem cell antigen 1 (Sca-1), CD34 double-positive cells purified from the muscle tissues of newborn mice are multipotent in vitro and can undergo both myogenic and multimyeloid differentiation. These muscle-derived stem cells were isolated from newborn mice expressing the LacZ gene under the control of the muscle-specific desmin or troponin I promoter and injected into arterial circulation of the hindlimb of mdx mice. The ability of these cells to interact and firmly adhere to endothelium in mdx muscles microcirculation was demonstrated by intravital microscopy after an intraarterial injection. Donor Sca-1, CD34 muscle-derived stem cells were able to migrate from the circulation into host muscle tissues. Histochemical analysis showed colocalization of LacZ and dystrophin expression in all muscles of the injected hindlimb in all of five out of five 8-wk-old treated mdx mice. Their participation in the formation of muscle fibers was significantly increased by muscle damage done 48 h after their intraarterial injection, as indicated by the presence of 12% β-galactosidase–positive fibers in muscle cross sections. Normal dystrophin transcripts detected enzymes in the muscles of the hind limb injected intraarterially by the mdx reverse transcription polymerase chain reaction method, which differentiates between normal and mdx message. Our results showed that the muscle-derived stem cells first attach to the capillaries of the muscles and then participate in regeneration after muscle damage
    • …
    corecore