1,187 research outputs found

    Quantum-Matter Heterostructures

    Full text link
    Combining the power and possibilities of heterostructure engineering with the collective and emergent properties of quantum materials, quantum-matter heterostructures open a new arena of solid-state physics. Here we provide a review of interfaces and heterostructures made of quantum matter. Unique electronic states can be engineered in these structures, giving rise to unforeseeable opportunities for scientific discovery and potential applications. We discuss the present status of this nascent field of quantum-matter heterostructures, its limitations, perspectives, and challenges.Comment: Invited review paper accepted in Annual Review of Condensed Matter Physics. Posted with permission from the Annual Review of Condensed Matter Physics, Volume 8 \c{opyright} 2017 by Annual Reviews, http://www.annualreviews.or

    Fermi's golden rule and the second law of thermodynamics

    Get PDF
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi's "golden rule". This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the combination of non-reciprocity with probabilistic radiation processes entails negative entropy production. Although the considered system appears to fulfill all conditions for Markovian stochastic dynamics, such a dynamics violates the Clausius inequality, a formulation of the second law of thermodynamics. Several implications concerning the interpretation of the quantum mechanical formalism are discussed.Comment: thoroughly revised, 30.5 pages, 9 figures, published online in Foundations of Physic

    Large Negative Electronic Compressibility of LaAlO3-SrTiO3 Interfaces with Ultrathin LaAlO3 Layers

    Full text link
    A two-dimensional electron liquid is formed at the n-type interface between SrTiO3 and LaAlO3. Here we report on Kelvin probe microscopy measurements of the electronic compressibility of this electron system. The electronic compressibility is found to be negative for carrier densities of \approx10^13/cm^2. At even smaller densities, a metal-to-insulator transition occurs. These local measurements corroborate earlier measurements of the electronic compressibility of LaAlO3-SrTiO3 interfaces obtained by measuring the capacitance of macroscopic metal-LaAlO3-SrTiO3 capacitors

    Field-Effect Devices Utilizing LaAlO3_3-SrTiO3_3 Interfaces

    Full text link
    Using LaAlO3_3-SrTiO3_3 bilayers, we have fabricated field-effect devices that utilize the two-dimensional electron liquid generated at the bilayers' {\textit n}-type interfaces as drain-source channels and the LaAlO3_3 layers as gate dielectrics. With gate voltages well below 1\,V, the devices are characterized by voltage gain and current gain. The devices were operated at temperatures up to 100\,{\deg}C.Comment: to be published in Applied Physics Letter

    Large capacitance enhancement and negative compressibility of two-dimensional electronic systems at LaAlO3_3/SrTiO3_3 interfaces

    Full text link
    Novel electronic systems forming at oxide interfaces comprise a class of new materials with a wide array of potential applications. A high mobility electron system forms at the LaAlO3_3/SrTiO3_3 interface and, strikingly, both superconducts and displays indications of hysteretic magnetoresistance. An essential step for device applications is establishing the ability to vary the electronic conductivity of the electron system by means of a gate. We have fabricated metallic top gates above a conductive interface to vary the electron density at the interface. By monitoring capacitance and electric field penetration, we are able to tune the charge carrier density and establish that we can completely deplete the metallic interface with small voltages. Moreover, at low carrier densities, the capacitance is significantly enhanced beyond the geometric capacitance for the structure. In the same low density region, the metallic interface overscreens an external electric field. We attribute these observations to a negative compressibility of the electronic system at the interface. Similar phenomena have been observed previously in semiconducting two-dimensional electronic systems. The observed compressibility result is consistent with the interface containing a system of mobile electrons in two dimensions.Comment: 4 figures in main text; 4 figures in the supplemen

    How Large is the Intrinsic Flux Noise of a Magnetic Flux Quantum, of Half a Flux Quantum and of a Vortex-Free Superconductor?

    Full text link
    This article addresses the question whether the magnetic flux of stationary vortices or of half flux quanta generated by frustrated superconducting rings is noisy. It is found that the flux noise generated intrinsically by a superconductor is, in good approximation, not enhanced by stationary vortices. Half flux quanta generated by π\pi-rings are characterized by considerably larger noise.Comment: 11 pages, 3 figures. in: A. Bussmann-Holder, H. Keller (Eds.) High Tc Superconductors and Related Transition Metal Oxides, Springer, 237-242; also to be published in: Journal of Superconductivity (2007

    Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System

    Full text link
    We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface electron system, of which the carrier density is tuned by an electric gate field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2, LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices are non-ohmic. The differential resistance at zero channel bias diverges within a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic channels has a metal-like temperature dependence, while below n_c conductivity sets in only above a threshold electric field. For a given thickness of the LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic. The metal-insulator transition is found to be distinct from that of the semiconductor 2D systems.Comment: 4 figure
    corecore