13 research outputs found

    Potentials of immunonutrition in wound healing : a review

    Get PDF
    A delayed wound healing process can lead to detrimental complications in chronic wound patients such as tissue necrosis and systemic infections. Application of immunonutrition (IN) in experimental animal models and chronic wound patients has shown promising and improved wound healing processes. IN restores the supply of essential nutrients that are critical for cell growth and tissue repair in the wounded subjects. Several commonly found nutrients in IN formulations include polyunsaturated fatty acids (PUFAs), essential amino acids, trace elements such as zinc and vitamins. Recently, some studies suggested the use of traditionally used herbs like curcumin in IN recipes due to its efficient wound healing properties. The roles and functions of IN in wound healing encompass recruitment of white blood cells, platelets and fibroblasts into the wounded area during the coagulation and inflammation phases, enhancement of fibroblast proliferation, collagen synthesis and neovascularization in the proliferation phase; and lastly, regulation of tissue re-epithelization for wound closure and recovery. In this review, the roles and functions of individual nutrients were deliberately discussed alongside their mechanisms of action in wound healing. This aims to provide a more holistic insight into the potentials of those nutrients when used as part of IN for major wound patients. Despite its remarkable effects in wound healing, several criteria should be considered in an IN formulation: the type and severity of wounds, administration timing and mode of administration, and concoction of immune-boosting nutrients in order to ensure the optimal wound healing effects

    Novel Role of Prostate Apoptosis Response-4 Tumor Suppressor in B-Cell Chronic Lymphocytic Leukemia

    Get PDF
    Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)–approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors

    Oxidative Stress-Induced JNK/AP-1 Signaling is a Major Pathway Involved in Selective Apoptosis of Myelodysplastic Syndrome Cells by Withaferin-A

    Get PDF
    Myelodysplastic syndromes (MDS) are a diverse group of malignant clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, dysplastic cell morphology in one or more hematopoietic lineages, and a risk of progression to acute myeloid leukemia (AML). Approximately 50% of MDS patients respond to current FDA-approved drug therapies but a majority of responders relapse within 2-3 years. There is therefore a compelling need to identify potential new therapies for MDS treatment. We utilized the MDS-L cell line to investigate the anticancer potential and mechanisms of action of a plant-derived compound, Withaferin A (WFA), in MDS. WFA was potently cytotoxic to MDS-L cells but had no significant effect on the viability of normal human primary bone marrow cells. WFA also significantly reduced engraftment of MDS-L cells in a xenotransplantation model. Through transcriptome analysis, we identified reactive oxygen species (ROS)-activated JNK/AP-1 signaling as a major pathway mediating apoptosis of MDS-L cells by WFA. We conclude that the molecular mechanism mediating selective cytotoxicity of WFA on MDS-L cells is strongly associated with induction of ROS. Therefore, pharmacologic manipulation of redox biology could be exploited as a selective therapeutic target in MDS

    Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia

    No full text
    The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the EÎĽ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies.status: publishe

    MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia

    No full text
    Activating mutations in the gene encoding the cell-cell contact signaling protein Notch1 are common in human T cell acute lymphoblastic leukemias (T-ALLs). However, expressing Notch1 mutant alleles in mice fails to efficiently induce the develo
    corecore