8 research outputs found

    Prevalensi Labioschisis Di Rsup. Prof. Dr. R. D. Kandou Manado Periode Januari 2011 – Oktober 2012

    Get PDF
    : Cleft lip or labioschisis is an inherited disorder that can occur on the lips to the ceiling. Cleft lip is a disruption in the face of growth since the fourth week of embryonic life. Method: This research in retrospection description research for knowning prevalence cleft lip or labioschisis in surgical department RSUP. Prof. Dr. R. D. Kandou Manado, period of Januari 2011 – October 2012. Output: Prevalence of Labioschisis and Labiopalatochisis on Januari 2011 – October 2012 is 57% and 43%. Presentation for each of kind harelipped are : unilateral labioschisis 47%, bilateral labioschisis 5%, unilateral palatum of labioshisis 28%, and bilateral palatum of labioschisis 12%, submucosa 1%, and cleft palate lips 7%. Presentation according to the place of defect : right 18%, left 57%, bilateral 25%, and status not complete 54%. Presentation according to age for doing operation : 0-4 years 73%, 5-9 years 10%, 10-14 years 7%, and >15 years 10%. Presentation labioschisis according to sex : Man 58%, and women 42%. Presentation labioschisis according to etiology : genetic factor 25%, environment factor 62%, and unknown factor 13%. Presentation of labioschisis that be surgery 93%, and not surgery 7%. Presentation of labioschisis according to complication surgery : bleeding post surgery 1%, secunder infection 4%, dehisensi/establish scar 4%, and not complication 91%. Conclusion: Prevalence labioschisis still decrease in each year, kind of labioschisis that large is unilateral labioschisis and localization defect is often on left edge. Labioschisis is happen more to man. Factor that to cause labioschisis between : genetic factor, environment factor and unknown factor. Labioschisis is often more to surgery 0-4 years old

    Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation.

    Get PDF
    Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain

    Neural stem cells traffic functional mitochondria via extracellular vesicles.

    Get PDF
    Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases

    LAPAROSCOPIC SURGICAL INSTRUMENT

    No full text
    The present invention relates to a laparoscopic surgical instrument. More particularly, the invention deals with a hand-held instrument equipped with a highly dexterous extremity, making the execution of very precise surgical intervention as in the robotic system while keeping very low costs as for all the hand-held surgical instrument. The present invention relates also to a kit comprising said laparoscopic surgical instrument and an instrument holder (e.g. a trocar) for the insertion of said instrument through an incision into a patient cavity
    corecore