14 research outputs found

    Double Ciphertext Mode : A Proposal for Secure Backup

    Get PDF
    Security of data stored in bulk storage devices like the hard disk has gained a lot of importance in the current days. Among the variety of paradigms which are available for disk encryption, low level disk encryption is well accepted because of the high security guarantees it provides. In this paper we view the problem of disk encryption from a different direction. We explore the possibility of how one can maintain secure backups of the data, such that loss of a physical device will mean neither loss of the data nor the fact that the data gets revealed to the adversary. We propose an efficient solution to this problem through a new cryptographic scheme which we call as the double ciphertext mode (DCM). In this paper we describe the syntax of DCM, define security for it and give some efficient constructions. Moreover we argue regarding the suitability of DCM for the secure backup application and also explore other application areas where a DCM can be useful

    Disk Encryption: Do We Need to Preserve Length?

    Get PDF
    In the last one-and-a-half decade there has been a lot of activity towards development of cryptographic techniques for disk encryption. It has been almost canonised that an encryption scheme suitable for the application of disk encryption must be length preserving, i.e., it rules out the use of schemes like authenticated encryption where an authentication tag is also produced as a part of the ciphertext resulting in ciphertexts being longer than the corresponding plaintexts. The notion of a tweakable enciphering scheme (TES) has been formalised as the appropriate primitive for disk encryption and it has been argued that they provide the maximum security possible for a tag-less scheme. On the other hand, TESs are less efficient than some existing authenticated encryption schemes. Also TES cannot provide true authentication as they do not have authentication tags. In this paper, we analyze the possibility of the use of encryption schemes where length expansion is produced for the purpose of disk encryption. On the negative side, we argue that nonce based authenticated encryption schemes are not appropriate for this application. On the positive side, we demonstrate that deterministic authenticated encryption (DAE) schemes may have more advantages than disadvantages compared to a TES when used for disk encryption. Finally, we propose a new deterministic authenticated encryption scheme called BCTR which is suitable for this purpose. We provide the full specification of BCTR, prove its security and also report an efficient implementation in reconfigurable hardware. Our experiments suggests that BCTR performs significantly better than existing TESs and existing DAE schemes

    STES: A Stream Cipher Based Low Cost Scheme for Securing Stored Data

    Get PDF
    The problem of securing data present on USB memories and SD cards has not been adequately addressed in the cryptography literature. While the formal notion of a tweakable enciphering scheme (TES) is well accepted as the proper primitive for secure data storage, the real challenge is to design a low cost TES which can perform at the data rates of the targeted memory devices. In this work, we provide the first answer to this problem. Our solution, called STES, combines a stream cipher with a XOR universal hash function. The security of STES is rigorously analyzed in the usual manner of provable security approach. By carefully defining appropriate variants of the multi-linear hash function and the pseudo-dot product based hash function we obtain controllable trade-offs between area and throughput. We combine the hash function with the recent hardware oriented stream ciphers, namely Mickey, Grain and Trivium. Our implementations are targeted towards two low cost FPGAs -- Xilinx Spartan~3 and Lattice ICE40. Simulation results demonstrate that the speed of encryption/decryption matches the data rates of different USB and SD memories. We believe that our work opens up the possibility of actually putting FPGAs within controllers of such memories to perform low-level in-place encryption

    FAST: Disk Encryption and Beyond

    Get PDF
    This work introduces \sym{FAST} which is a new family of tweakable enciphering schemes. Several instantiations of \sym{FAST} are described. These are targeted towards two goals, the specific task of disk encryption and a more general scheme suitable for a wide variety of practical applications. A major contribution of this work is to present detailed and careful software implementations of all of these instantiations. For disk encryption, the results from the implementations show that \sym{FAST} compares very favourably to the IEEE disk encryption standards XCB and EME2 as well as the more recent proposal AEZ. \sym{FAST} is built using a fixed input length pseudo-random function and an appropriate hash function. It uses a single-block key, is parallelisable and can be instantiated using only the encryption function of a block cipher. The hash function can be instantiated using either the Horner\u27s rule based usual polynomial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd polynomials. Security of \sym{FAST} has been rigorously analysed using the standard provable security approach and concrete security bounds have been derived. Based on our implementation results, we put forward \sym{FAST} as a serious candidate for standardisation and deployment

    Efficient Hardware Implementations of BRW Polynomials and Tweakable Enciphering Schemes

    Get PDF
    A new class of polynomials was introduced by Bernstein (Bernstein 2007) which were later named by Sarkar as Bernstein-Rabin-Winograd (BRW) polynomials (Sarkar 2009). For the purpose of authentication, BRW polynomials offer considerable computational advantage over usual polynomials: (m1)(m-1) multiplications for usual polynomial hashing versus m2\lfloor\frac{m}{2}\rfloor multiplications and log2m\lceil\log_2 m\rceil squarings for BRW hashing, where mm is the number of message blocks to be authenticated. In this paper, we develop an efficient pipelined hardware architecture for computing BRW polynomials. The BRW polynomials have a nice recursive structure which is amenable to parallelization. While exploring efficient ways to exploit the inherent parallelism in BRW polynomials we discover some interesting combinatorial structural properties of such polynomials. These are used to design an algorithm to decide the order of the multiplications which minimizes pipeline delays. Using the nice structural properties of the BRW polynomials we present a hardware architecture for efficient computation of BRW polynomials. Finally we provide implementations of tweakable enciphering schemes proposed in Sarkar 2009 which uses BRW polynomials. This leads to the fastest known implementation of disk encryption systems

    Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security

    Get PDF
    This paper proposes a lightweight authenticated encryption (AE) scheme, called Light-OCB, which can be viewed as a lighter variant of the CAESAR winner OCB as well as a faster variant of the high profile NIST LWC competition submission LOCUS-AEAD. Light-OCB is structurally similar to LOCUS-AEAD and uses a nonce-based derived key that provides optimal security, and short-tweak tweakable blockcipher (tBC) for efficient domain separation. Light-OCB improves over LOCUS-AEAD by reducing the number of primitive calls, and thereby significantly optimizing the throughput. To establish our claim, we provide FPGA hardware implementation details and benchmark for Light-OCB against LOCUS-AEAD and several other well-known AEs. The implementation results depict that, when instantiated with the tBC TweGIFT64, Light-OCB achieves an extremely low hardware footprint - consuming only around 1128 LUTs and 307 slices (significantly lower than that for LOCUS-AEAD) while maintaining a throughput of 880 Mbps, which is almost twice that of LOCUS-AEAD. To the best of our knowledge, this figure is significantly better than all the known implementation results of other lightweight ciphers with parallel structures

    tHyENA: Making HyENA Even Smaller

    Get PDF
    This paper proposes a lightweight short-tweak tweakable blockcipher (tBC) based authenticated encryption (AE) scheme tHyENA, a tweakable variant of the high profile NIST LWC competition submission HyENA. tHyENA is structurally similar to HyENA, however, proper usage of short-tweaks for the purpose of domain separation, makes the design much simpler compact. We know that HyENA already achieves a very small hardware footprint, and tHyENA further optimizes it. To realize our claim, we provide NIST API compliant hardware implementation details and benchmark for tHyENA against HyENA and several other well-known sequential feedback-based designs. The implementation results depict that when instantiated with the tBC TweGIFT, tHyENA achieves an extremely low hardware footprint - consuming only around 680 LUTs and 260 slices while maintaining the full rate and the almost birthday bound security. To the best of our knowledge, this figure is significantly better than all the known implementation results of other lightweight ciphers with sequential structures

    Elastic-Tweak: A Framework for Short Tweak Tweakable Block Cipher

    Get PDF
    Tweakable block cipher (TBC), a stronger notion than standard block ciphers, has wide-scale applications in symmetric-key schemes. At a high level, it provides flexibility in design and (possibly) better security bounds. In multi-keyed applications, a TBC with short tweak values can be used to replace multiple keys. However, the existing TBC construction frameworks, including TWEAKEY and XEX, are designed for general purpose tweak sizes. Specifically, they are not optimized for short tweaks, which might render them inefficient for certain resource constrained applications. So a dedicated paradigm to construct short-tweak TBCs (tBC) is highly desirable. In this paper, we present a dedicated framework, called the Elastic-Tweak framework (ET in short), to convert any reasonably secure SPN block cipher into a secure tBC. We apply the ET framework on GIFT and AES to construct efficient tBCs, named TweGIFT and TweAES. We present hardware and software results to show that the performance overheads for these tBCs are minimal. We perform comprehensive security analysis and observe that TweGIFT and TweAES provide sufficient security without any increase in the number of block cipher rounds when compared to GIFT and AES. We also show some concrete applications of ET-based tBCs, which are better than their block cipher counterparts in terms of key size, state size, number of block cipher calls, and short message processing. Some notable applications include, Twe-FCBC (reduces the key size of FCBC and gives better security than CMAC), Twe-LightMAC Plus (better rate than LightMAC Plus), Twe-CLOC, and Twe-SILC (reduces the number of block cipher calls and simplifies the design of CLOC and SILC)

    Elastic-Tweak: A Framework for Short Tweak Tweakable Block Cipher

    Get PDF
    Tweakable block cipher (TBC), a stronger notion than standard block ciphers, has wide-scale applications in symmetric-key schemes. At a high level, it provides flexibility in design and (possibly) better security bounds. In multi-keyed applications, a TBC with short tweak values can be used to replace multiple keys. However, the existing TBC construction frameworks, including TWEAKEY and XEX, are designed for general purpose tweak sizes. Specifically, they are not optimized for short tweaks, which might render them inefficient for certain resource constrained applications. So a dedicated paradigm to construct short-tweak TBCs (tBC) is highly desirable. In this paper, as a first contribution, we present a dedicated framework, called the Elastic-Tweak framework (ET in short), to convert any reasonably secure SPN block cipher into a secure tBC. We apply the ET framework on GIFT and AES to construct efficient tBCs, named TweGIFT and TweAES. These short-tweak TBCs have already been employed in recent NIST lightweight competition candidates, LOTUS-LOCUS and ESTATE. As our second contribution, we show some concrete applications of ET-based tBCs, which are better than their block cipher counterparts in terms of key size, state size, number of block cipher calls, and short message processing. Some notable applications include, Twe-FCBC (reduces the key size of FCBC and gives better security than CMAC), Twe-LightMAC Plus (better rate than LightMAC Plus), Twe-CLOC, and Twe-SILC (reduces the number of block cipher calls and simplifies the design of CLOC and SILC)
    corecore