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Abstract—In the last one-and-a-half decade there has been a lot of activity towards development of cryptographic techniques for disk
encryption. It has been almost canonised that an encryption scheme suitable for the application of disk encryption must be length
preserving, i.e., it rules out the use of schemes like authenticated encryption where an authentication tag is also produced as a part of
the ciphertext resulting in ciphertexts being longer than the corresponding plaintexts. The notion of a tweakable enciphering scheme
(TES) has been formalised as the appropriate primitive for disk encryption and it has been argued that they provide the maximum
security possible for a tag-less scheme. On the other hand, TESs are less efficient than some existing authenticated encryption
schemes. Also TES cannot provide true authentication as they do not have authentication tags. In this paper, we analyze the possibility
of the use of encryption schemes where length expansion is produced for the purpose of disk encryption. On the negative side, we
argue that nonce based authenticated encryption schemes are not appropriate for this application. On the positive side, we demonstrate
that deterministic authenticated encryption (DAE) schemes may have more advantages than disadvantages compared to a TES when
used for disk encryption. Finally, we propose a new deterministic authenticated encryption scheme called BCTR which is suitable for
this purpose. We provide the full specification of BCTR, prove its security and also report an efficient implementation in reconfigurable

hardware. Our experiments suggests that BCTR performs significantly better than existing TESs and existing DAE schemes.

Index Terms—Disk encryption, Tweakable Enciphering Schemes, Deterministic Authenticated Encryption.

1 INTRODUCTION

Security of data stored in bulk storage devices such
as hard disks of laptop and desktop computers, USB
sticks and SD cards has received a fair bit of attention
from the cryptographic community. It has been argued
that the best solution to this problem is an encryption
scheme where the encryption and decryption algorithms
reside in the disk controller. The algorithms would have
access to the disk sectors but would have no knowledge
about the high-level logical partitions of the disk, such
as files and directories, which are maintained by the
operating system and/or database management systems.
Under this scenario, the disk controller encrypts the data
before it writes a sector, and similarly, after reading a
sector, the disk controller decrypts it before sending it to
the operating system. This type of encryption has been
termed in the literature as low-level disk encryption or in-
place disk encryption.

A symmetric key cryptosystem with certain specific
properties can serve as a solution to the low-level disk
encryption problem. From the usability angle, one par-
ticularly important property that has been emphasized
is length-preservation, i.e., the string that should be
stored on a disk sector must have the same length as
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that of the plaintext. This requirement rules out the
schemes which produces authentication tags or uses
other kinds of parameters such as nonces, initialization
vectors etcetera. From the security angle, the schemes
to be used must be secure against adaptive-chosen
plaintext and ciphertext attacks. Informally this implies
that no efficient adversary should be able to distinguish
ciphertexts from random strings; and should not be
able to modify a ciphertext so that it gets decrypted to
something meaningful.

The cryptographic primitive called tweakable enci-
phering scheme (TES) was introduced in [18] as an
appropriate candidate for low level disk encryption. The
paper also provided the first TES scheme as a mode
of operation of a block cipher. In the last few years, a
number of proposals for TES have been proposed (see
for example [18], [19], [37], [32]) and there have been
studies regarding efficient hardware implementations of
the proposed schemes [25].

In this paper, we revisit the requirement of length
preservation for disk encryption. We argue that the
length preserving property may not be crucial for this
application as disk manufacturers can suitably format
hard disks to accommodate a possible expansion in the
ciphertext. A disk sector in any case has to store more
information (such as error correction information) than
the user data, so, the suggestion for storing a little
extra information arising from encryption requirement
may not be a big issue. Our analysis shows that space
overhead for storing a longer ciphertext is as little as
0.4%.

Removing the restriction of length preservation brings



up the question of whether there are schemes which offer
the same (or more) security guarantee as a TES, but at the
same time are more efficient. To this end, we consider
two kinds of authenticated encryption, namely (nonce
based) authenticated encryption (AE) and deterministic
authenticated encryption (DAE).

Using a (nonce based) AE for disk encryption is very
attractive. However, we argue that there are significant
security and practicability concerns which nullify this
option. The other natural candidate is DAE with as-
sociated data. We argue that a DAE scheme satisfies
the security requirement expected of a disk encryption
scheme. Further, it also provides true message authenti-
cation unlike that of a TES'. The main gain in using a
DAE scheme instead of a TES is in terms of efficiency.

To the best of our knowledge, the possibility of using
DAE for disk encryption has not been explored earlier.
One possible reason for this may be the fact that the
notion of TES and its suitability for disk encryption
predates the notion of DAE. The other possible reason is
that DAE itself was introduced for a different application
which is to solve the so-called key-wrap problem [30].
So, we are suggesting that a later introduced primitive
(DAE) is more suitable for solving an earlier introduced
problem (disk encryption) than the earlier introduced
solution (TES).

We present a new DAE scheme called BCTR which
is designed to specifically serve as a low-level disk
encryption primitive. The design is based on a com-
bination of XOR universal hash function and a block
cipher. The hash function uses a very fast polynomial
based hashing technique due to Bernstein [4]. The overall
design strategy is to hash the contents of the sector
and the sector address to produce a tag. This tag is
used as an initialization vector (IV) in a counter type
mode of a block cipher to perform the actual encryption
of the contents of the sector. The ciphertext consists
of the encrypted sector and the tag. This approach to
the design of DAE follows the conceptual framework
outlined in [30]. The idea of combining a XOR universal
hash and a block cipher to design a DAE scheme has
also been suggested in [20], [21]. Our details, however,
are different and results in a faster overall scheme. We
note that even though the main target of the new DAE
scheme is disk encryption, the scheme itself (actually a
slightly generalised version) can also be used for other
more typical DAE applications.

The structure of BCTR bears some similarity with a
construction named DCM-BRW proposed in [9]. In [9]
a variant of the counter mode and a special polynomial
hash were used to construct a double ciphertext mode
(DCM). A DCM is a special mode which produces two
ciphertexts for a single message, its functionality and
security are different from that of a DAE. BCTR, though

1. TESs do provide implicit authentication in the sense that if a single
bit of a valid ciphertext is changed then it gets decrypted to a random
plaintext which can be detected by a high level application which
would use the plaintext.

shares the same components of DCM-BRW, its details
are quite different from DCM-BRW.

Previous and related works: The primitives TES and
DAE are well studied and below we briefly mention the
relevant previous works.

The notion of TES as a distinct cryptographic primitive
and its application to disk encryption was proposed
in [18]. Since then, there has been a long line of research
in designing secure and efficient TESs [19], [16], [26], [37],
[11], [12], [17], [32]. These have mostly been block cipher
modes of operations. Application of stream ciphers to
TES design have been proposed in [33], [8]. Compara-
tive implementation of different TES on reconfigurable
hardware has been carried out in [25], [10], [8].

Some schemes for disk encryption have been stan-
dardised by different agencies. Notable among these are
EME?2 [16] and XCB [27], which have been standardized
in IEEE-std 1619.2-2010 [2]. In a recent work, several
flaws about XCB have been reported in [7]. A mode of
operation called XTS has also been standardised for disk
encryption in IEEE-std 1619-2007 [1]. It is well known
that XTS is not a TES and there are easy block-level mix-
and-match attacks on XTS. This is noted in the standard
document itself which consciously overlooks this due to
the higher efficiency of XTS compared to known TES
designs. More discussions regarding the disk encryption
standards can be found in Appendix A.

The notion of DAE was formalised in [30] which also
proposed a concrete DAE scheme. At a top level, the
basic construction idea for DAE outlined in [30] has been
followed in later works [20], [21]. As mentioned above,
the works [20], [21] follow the strategy of combining
a XOR universal hash function with a block cipher to
obtain a DAE scheme. A DAE scheme realised as a mode
of operation of a stream cipher has been proposed in [34].

2 BACKGROUND
2.1

We denote the set of all binary strings by {0,1}*, and
the set of all n-bit strings by {0,1}". For X,Y € {0,1}*,
X||Y will denote the concatenation of the strings X and
Y, and |X| denotes the length of X in bits. For a non-
negative integer ¢ < 2", bin, (i) will denote the n-bit

Notation

binary representation of i. By X & S, we will denote
the event of choosing X uniformly at random from the
finite set S.

An irreducible polynomial of degree n over GF(2)
provides a representation of the finite field GF(2"). The
elements of GF(2") can be considered to be polynomials
over GF(2) of degrees less than n. We shall sometimes
view n-bit strings as polynomials of degree less than
n with coefficients in GF(2) and as such consider n-
bit strings to be elements of GF(2"). If X and Y are
n-bit strings, then X @ Y will denote the addition in
the field, which is a bitwise XOR of the strings; and
XY will denote multiplication in GF(2") which can be



realized by ordinary polynomial multiplication modulo
the irreducible polynomial representing the field.

An adversary A is an algorithm which has access to
one or more oracles and which outputs either 0 or 1.
Oracles are written as superscripts. The notation A®1:©2
denotes an adversary A which has access to the oracles
0y and O, and the notation A°1:92 = 1 denotes the
event that the adversary A outputs the bit 1.

An n-bit block cipher is a function £ : £ x {0,1}" —
{0,1}", where K # 0 is the key space and for any
K € K, E(K,.) is a permutation. We write Fk (.) instead
of E(K,.). Let Perm(n) denote the set of all permutations
on {0,1}". Our security analysis will be in the informa-
tion theoretic setting where a block cipher is modelled
as a uniform random permutation, i.e., in the analysis
a concrete block cipher will be replaced by = which is
chosen uniformly at random from Perm(n).

2.2 Tweakable Enciphering Schemes

A tweakable enciphering scheme is a tuple (K,E,D)
where K is the key generation algorithm (which is
randomised) and E and D are deterministic algorithms
and can be seen as functions E,D : x7 x X — X. Here
K # 0 and T # ( are the key space and the tweak space
respectively. The message and the cipher spaces are X.
We shall write EL(.) and D% (.) instead of E(K,T,.)
and D(K,T,.) respectively. The functions E and D are
inverses in the following sense: X = D% (Y) if and only
if ET(X) =Y.

Let II” (X)denote the set of all functions 7 : TxX — X
where 7(T,.) is a length preserving permutation. Such
am eI is called a tweak indexed permutation. For
a tweakable enciphering scheme E : K x 7 x & — &,
we define the advantage an adversary A has in distin-
guishing E and its inverse from a random tweak indexed
permutation and its inverse in the following manner.

AdviPP(4) — ’Pr K& s AR ]
— Pr [7r EaT(Mm) AT o 1] ] (1)

A has the following restrictions while querying its or-
acles: Let T, P and C represent tweak, plaintext and
ciphertext respectively. We assume that an adversary
never repeats a query, i.e., it does not ask the encryption
oracle with a particular value of (T, P) or the decryption
oracle with a particular value of (7, C') more than once.
Furthermore, an adversary never queries its decryption
oracle with (T, C) if it got C in response to an encrypt
query (T, P) for some P. Similarly, the adversary never
queries its encryption oracle with (7', P) if it got P as
a response to a decryption query of (7', C) for some C.
These queries are called pointless as the adversary knows
what it would get as responses for such queries.

The resource bounded advantage Adviprp(q, o) is de-
fined to be the maximum advantage over all adversaries
A, when A is allowed to make a total of at most ¢

queries with query complexity ¢. The number of queries
includes both encryption and decryption queries and the
query complexity counts the total number of bits in both
encryption and decryption queries.

2.3 Deterministic Authenticated Encryption

Deterministic authenticated encryption (DAE) schemes
are encryption schemes which provide security both in
terms of privacy and authentication. These schemes were
first proposed by Rogaway and Shrimpton [30], where
the authors described the syntax of the DAE along with
the security definition and a generic construction which
they called as the Synthetic Initialization Vector (SIV)
mode.

A DAE is a tuple ¥ = (K, E, D), where K is the key
generation algorithm (which is randomised); E and D
are deterministic algorithms called as encryption and
decryption algorithms respectively.

With a DAE ¥ are associated non-empty sets K, X, Y
and H which are respectively the key, message, cipher
and header spaces. The encryption algorithm E takes as
input an element from K x H x X and returns an element
in Y; the decryption algorithm takes as input an element
from K x H x Y and returns either an element in X or
a special symbol L. We shall write E£(X) or Ex(H, X)
to denote E(K, H, X). Similarly, we shall write DZ(Y)
or Dg(H,Y) to denote D(K, H,Y).

The message space and the cipher space are non-
empty sets containing binary strings, i.e., X, Y C {0,1}*,
and the header space H contains vectors whose compo-
nents are binary strings. It is required that D (Y) = X
if Ef£(X) =Y and DE(Y) = L if no such H € H and
X € X exist such that EZZ(X) =Y.

It is assumed that for any K € K, X € X and H €
H, |[EE(X)| = |X| +e(X,H), where e : X x H — N is
called the expansion function of the DAE scheme. The
value A = minxex gen{e(X, H)} is called the stretch of
the DAE scheme. In most (possibly all) constructions the
amount of expansion is independent of the length of the
message.

Let ¥ = (K,E,D) be a DAE scheme. Let A be an
adversary attacking W. The adversary has access to the
oracle O. O can either be Ex(.,.), where K is generated
uniformly at random from the key space K or it can be
$(.,.) which returns random strings of length equal to
the length of the ciphertext. The adversary can query
the oracle with a query of the form (H, M), where H,
M denotes the header and message respectively and
and thus get back the responses from the oracle. A has
the restriction that it cannot repeat a query. The privacy
advantage of adversary A is defined as

A dvflljae—prlv (A) =

PI‘[K(EIC:AEK:>1}
—Pr [A$:>1”. 2)

To define the authentication advantage we consider that
A is given access to the encryption oracle Ex(.,.) and



queries it with plaintexts of his choice and obtains the
corresponding ciphertexts. Finally, A outputs a forgery,
which consists of a header and a ciphertext (T,C). A
is said to be successful if D (T,C) # L. For querying
the encryption oracle A follows the same restriction
that the adversary does not repeat a query additionally
A cannot output (T,C) as a forgery if he obtained C
as a response for his query (7', X) to the encryption
oracle. The last restriction is to rule out trivial win. The
authentication advantage of the adversary A is defined
as the probability that A does a successful forgery, in
other words

Advg,ae_aUth(A) _ Pr[AEK( ..... ) forges |. (©)]

The resource bounded advantages Adviae_pnv(q,a)

and Advgae'a‘jih(q, o) are defined in the same way as

that for Adviprp(q7 o). In [30] the two notions of privacy
and authentication as depicted in equations (2) and (3)
were combined to give a unified security definition.
In [30] it was shown that the unified definition of se-
curity is equivalent to the separate notions of privacy
and authenticity. In the present case we use the separate
definitions of privacy and authenticity, as that makes it
easier to understand the proofs.

2.4 (Nonce Based) Authenticated Encryption

The notion of nonce-based AE predates the formalisation
of DAE. As evident, nonce based AE schemes receives as
input a nonce in addition to the plaintext and the header.
The nonce is supposed to be unique for each message,
and no security is guaranteed if the same nonce is ever
used to encrypt two messages. The use of a nonce allows
more efficient constructions of AE compared to DAE.
There are very efficient constructions of nonce based AEs
already available in the literature, for example the OCB
mode of operation and its variants [29], [28], [22]. The
CAESER competition [6] is currently considering more
than 50 different AE constructions. All these candidates
are not necessarily nonce based AEs.

The security of AE schemes was first formalized in
[3]. The currently accepted security definition for nonce
based AEs is similar to that of a DAE, i.e., an AE is
considered to be secure if it is secure both in terms of
privacy and authentication as mentioned in equations (2)
and (3). The important difference is that an adversary is
allowed to choose the nonce along with the message and
headers in its encryption queries and is not allowed to
repeat a nonce in its encryption queries.

3 To TAG OR NOT TO TAG?

Suppose that for disk encryption, we wish to use a length
increasing encryption primitive where ciphertexts are
longer than plaintexts due to the generation of a tag.
We will assume that the length of the ciphertext for a
message of length ¢ is /+\ bits, where ) is a constant, i.e.,

it does not depend on ¢ and is fixed for the scheme. Most
(possibly all) practical schemes providing authentication
satisfy this condition.

The first question one has to consider is how would
such a primitive fit into the existing architecture. There
are two options that one may consider. For the ensuing
discussion, suppose that disk sectors are s bits long.
Application-oblivious strategy: In a typical architecture,
software applications such as operating systems and
databases read and write data from the disk in chunks
of s-bit blocks. The same continues to be true even with
the use of a tag-based disk encryption scheme. To enable
this, the disk would have to be organised so that A
addtional bits are made available per sector to store the
tag. With this option, the applications do not require any
change and continue to read and write data as before.
Application-aware strategy: In this option, the organi-
sation of the disk is not changed. Instead, the \-bit tag
is stored within the s bits of each sector. As a result,
applications will be required to read and write data in
chunks of s — A bits.

Both the strategies require storing the tag and will
result in the loss of some amount of available disk
space. There are, however, several important differences
between the two strategies.

For the application-aware strategy there are several
objections. For one thing, it will require basic changes
in the input/output routines of a large number of appli-
cations such as operating systems and database man-
agement systems. This makes the option unattractive
from an application point of view. From a more abstract
level, this strategy violates the principle of low-level disk
encryption.

The deployment of a disk encryption scheme should
be invisible to top level applications which should work
the same way for both encrypted and unencrypted disks.
Modifying the disk read/write modules of applications
to enable these to communicate with encrypted disks
will make them unsuitable for communicating with un-
encrypted disks. Since it is not envisaged that all disks
will be encrypted, applications will be required to have
two sets of disk read/write modules, one for accessing
encrypted disks and another for accessing unencrypted
disks. This is clearly a problematic scenario and will
result in the whole idea being a non-starter. Having said
this, we do remark that there could be some specific
niche applications where this approach would be suit-
able. The particular tag-based disk encryption scheme
that we propose can be suitably modified to handle such
situations.

Let us now consider the application-oblivious strategy.
From the point of top-level applications which interact
with disks, this strategy does not require any change
in the read/write modules. Both encrypted and un-
encrypted disks will be accessed in exactly the same
manner and data will be read in s-bit chunks. It will
be the responsibility of the disk controller to ensure that
encryption and decryption are done in a manner which



is transparent to the applications.

The application-oblivious strategy requires disk man-
ufactures to incorporate certain changes in the way disks
are organised. Currently disk sectors are 4096 bytes,
which means that each sector can store 4096 bytes of
user data. This, however, does not mean that only 4096
bytes are alloted for a sector. The following additional
overhead have to be incurred per sector.

Error correction coding: The user data is not stored
in the format provided by an application to the disk.
An important transformation that the user data un-
dergoes is error correction coding and this obviously
creates an expansion in length of the original data.
So the 4096 bytes of data which an application sends
to the disk controller for writing occupies more than
4096 bytes in the physical disk as it is appropriately
coded for error correction by the disk controller.
Preamble: These bits are used to synchronize
read/write head movements. Formatting a disk is
writing all preambles on it.
Inter-sector gap: A certain amount of physical gap
is kept between two sectors on a disk.
The sum-total of the above constitutes the data sector
level overhead. Additionally, there is another overhead
which is at the servo sector level. Some idea about the
overheads can be found in [36]. A letter by Fujitsu Cor-
poration in 2003 declared that the then format overhead
of their commercial hard disks were approximately 15%
of the sector size, and in the letter it was predicted that
maintaining hard disks which store 512 bytes (the sector
size in 2003) of user data per sector would make the
format overhead to grow to 30% within 2006 [14](Page
15). Current disks store 4096 bytes of user data per sector.

The essence of the above discussion is that physically
a disk sector is larger than the amount of user data it
can store. It is in this context that we put forward the
suggestion that disk manufacturers can organise sectors
to accommodate an additional A bits to store a tag. In
the application oblivious strategy, these A bits will not be
visible to the applications which access the disks which
will continue to read/write data in the same manner
as it does for unencrypted disks. If A = 128 (i.e., 128-
bit tags are used for authentication), then the storage
overhead incurred due to the storage of the tags is 0.4%.
Using smaller values of A reduces the overhead further.
Compared to the overhead for error correction coding
this is negligible.

It is to be noted that TES based disk encryption
schemes do not have any ciphertext expansion. As a
result, using a TES for disk encryption does not require
any reorganisation of the physical sector layout of a
disk. Arguably, it is for this reason that TESs have been
proposed as the ideal solution for disk encryption.

Implementing any disk encryption scheme as part of
the disk controller entails a performance penalty. It is
desirable to minimise this penalty to the extent possible.
In this context, the question arises as to whether it is
possible to design a disk encryption scheme which is

faster than a TES and provides the same (or better)
security guarantee? In the rest of the work we answer
this question in the affirmative, but with the trade-off
that the physical sector organisation should be capable
of storing an additional tag and so incurring a small
overhead.

4 TAG-BASED ENCRYPTION SCHEMES:

WHICH ONE TO USE?

The literature describes two types of symmetric encryp-
tion schemes which lead to ciphertexts being longer
than plaintext due to the generation of a tag. These are
authenticated encryption with associated data and de-
terministic authenticated encryption also with associated
data.

As already discussed in Section 2.4, AE schemes pro-
vide security both in terms of privacy and authentica-
tion. The ciphertext produced by these schemes includes
an authentication tag, and this authentication tag can be
used to verify the authenticity of the ciphertext. There
have been many proposals for AE scheme. Among them,
some (such as the famous OCB mode of operation [29],
[28], [22]) are very efficient and require little computation
other than a block-cipher call per block of message.

AE schemes are nonce based, i.e., they require a quan-
tity called nonce, which is non-repeating. In other words,
to ensure security, each plaintext needs to be encrypted
with a different value of the nonce. If the same value of
the nonce is used for two encryptions then the scheme
loses security. It is in the generation and management of
nonces that problems arise. We next discuss the problems
of using a nonce based scheme for disk encryption.

41

AE requires nonces for both encryption and decryption.
Thus, in a ciphertext produced by an AE scheme, the
nonce has to be stored along with the ciphertext. This
results in further increasing the sector level overhead
beyond what would be required for storing only the
tag. If a scheme uses a p-bit nonce and a A-bit tag, the
expansion would be i+ A bits beyond the user data. It is
possible to consider several strategies for generation and
storage of nonces. We list these possibilities and analyse
them:

Sector level counter: In this strategy, we assume that
a counter is maintained for each sector, and a nonce is
generated by concatenating the sector address with the
current counter value. For this, it would be sufficient to
use a 40-bit counter to generate the nonces. This 40-bit
counter value for each sector is stored within the sector.
When a write to the sector is required the current counter
value is read from the sector, it is incremented, and this
value is used to generate the nonce by concatenating the
counter with the sector address and finally encrypt. The
incremented value is written back to the sector along
with the ciphertext. This will ensure that each plaintext

Problems with Nonces



gets encrypted with a unique nonce. Also, storing the
40-bit counter would be sufficient as the sector addresses
are implicitly known by the disk controller.

A serious security concern with this strategy is that a
malicious adversary may be able to tamper the value of
the counter stored in a sector and force the encryption
of two different messages with the same nonce. This is
possible in the following scenario. The adversary sends
a plaintext to be stored in a sector and the disk controller
generates the ciphertext and stores the current counter
value and the ciphertext on the disk. The adversary reads
off the ciphertext and tampers the data stored on the
sector by decrementing the value of the counter. It then
sends another plaintext to be stored in the same sector.
In response, the disk controller reads the current counter
value stored in the sector, increments it and encrypts
the provided plaintext with the counter value and again
stores on the sector. By reading off the new ciphertext,
the adversary is able to obtain the ciphertexts corre-
sponding to two different plaintexts encrypted under
the same nonce. This violates the security requirement
of nonce-based encryption schemes and can lead to
concrete attacks.

Apart from the security issue, storing the counter
along on the sector creates another inefficiency. Suppose
a write to the sector is required. To determine the present
value of the counter, the disk controller must first read
the entire sector before it can encrypt the given data and
write back. So, each write request necessarily generates
a read request.

A solution would be to not store the counter value in
the sector but, to maintain a separate counter for each
sector in additional tamper resistant storage, which may
be a part of the disk controller. Given the huge number
of sectors that are present in modern day disks, such a
solution is infeasible from an engineering point of view.
Global counter: In this approach, a single global counter
is maintained in a tamper resistant storage for the whole
disk and any sector write uses the current value of
the counter and increments it. To enable decryption,
the value of the counter under which encryption is
done has to be stored in the sector along with the
ciphertext. One major difficulty with this solution is the
following. Suppose several sectors are required to be
written simultaneously. With a single global counter this
will not be possible. Since unique counter values will
be required, the writes will necessarily have to be done
in a sequential manner. This will result in significant
performance degradation.

An intermediate solution can be to use several global
counters. While this is an engineering compromise be-
tween a single global counter and sector level counter, it
still has the problem that the global counters have to be
stored in tamper resistant memory. To avoid repetition,
the nonces for a particular sector must be from a single
counter. So, the sectors in a disk would have to be
partitioned and each counter is to be used for servicing
one set of sectors. As a result, the problem of simultane-

ous writing of sectors in one particular partition is not
resolved.

Random Nonce: Nonces are required to be distinct, but if
relatively long nonces are used, then one may work with
a random nonce. For example, if 128-bit nonces are used,
then using a random nonce will with high probability
ensure that the first 264 nonces are distinct. Such nonces
would have to stored in the sector along with the cipher-
text. The major problem with this approach is the proper
generation of random nonces for each sector write. It is
this problem which makes this solution infeasible.

In summary, the issue of secure generation, handling,
and storage of nonces is a non-trivial engineering task
and effectively rules out the use of nonce based AE
schemes for disk encryption.

5 UsE oF DAE SCHEMES FOR DiISK ENCRYP-
TION

DAE schemes are similar to AE schemes but they do not
require nonces. They provide almost the same security
as that of AE schemes. The only difference is that DAE
schemes being deterministic produce the same ciphertext
if the same plaintext is encrypted multiple times.

We propose the use of DAE schemes with support for
authenticating associated data as a solution to the disk
encryption problem. The proposed usage is as follows.

Plaintexts are of fixed lengths which is the length of
the user data that is stored on individual sectors. For
encryption, the sector address is used as the associated
data. The ciphertext consists of two strings, one of which
is of the same length as the plaintext and the other string
is a short fixed length tag. The first string is written on
the portion of the sector which stores user data. The tag
is written in an additional space in the sector. As argued
above, this is the application oblivious strategy and the
physical disk structure has to be organised to provide
space for storing such a tag.

In the following subsections we discuss several issues
regarding the suitability of DAE when used in the above
manner.

5.1 Is Security of DAE Adequate for Disk Encryp-
tion?

Both DAE and TES being deterministic schemes, they
share a common feature. If the same plaintext is en-
crypted with the same tweak (associated data) twice
then the ciphertexts are also the same. We would like
to suggest the replacement of TES with DAE. For this
we need to argue that the security guarantee of a DAE
scheme is not at a lower level than the security guarantee
of a TES.

As explained earlier, the security model of a TES is the
following. The adversary is given access to two oracles
which it can query in an adaptive manner (without
making pointless queries). At the end, it has to decide
whether the oracles are real (i.e., the oracles are the



encryption and decryption algorithms of the TES instan-
tiated with a uniform random key) or random (i.e., the
oracles are two independent random oracles).

Security of DAE can also be viewed in a similar
manner. The adversary is given access to two oracles
(say left and right) which it can query in an adaptive
manner. At the end, it has to determine whether the
oracles are real or random. For the real case, the left and
the right oracles are respectively the encryption and the
decryption algorithms of the DAE scheme instantiated
with a uniform random key; while for the random
case, the left oracle is a random oracle which returns
independent and uniform random strings of appropriate
length and the right oracle is one which always returns
1.

The security of DAE defined earlier implies security
against the above adversarial model. This can be easily
seen by considering a sequence of three games. In the
first game, the oracles provided to the adversary are
real. In the second game, the decryption (i.e., the right)
oracle is replaced by an oracle which always returns
1. The advantage of an adversary to distinguish be-
tween these two games can be upper bounded by the
advantage of an adversary in defeating the authenticity
of the DAE scheme. In the third game, the encryption
(i.e., the left) oracle is replaced by a random oracle
which returns independent uniform random strings of
appropriate lengths. The advantage of an adversary to
distinguish between the second and the third game is
upper bounded by the advantage of an adversary in
defeating the privacy of the DAE scheme.

The first game is the real game and the third game
is the random game. For a secure DAE scheme, the
difference in an adversary’s advantage in the two games
are bounded above by the sum of the advantages of de-
feating either privacy or authenticity of the DAE scheme.
This informal argument shows that a DAE scheme secure
in the model defined in Section 2.3 implies security in
the two-oracle model. For a more formal treatment of
this approach see [30].

Two-oracle security models for TES and DAE are

similar. Both essentially capture the intuition that access
to these oracles do not provide sufficient information to
the adversary to distinguish real from random. So, from
a security point of view, replacing TES with DAE does
not entail any loss.
True Authentication: DAE are authenticated encryption
schemes and ciphertexts produced by such schemes have
authentication tags. Using these tags the authenticity
of the ciphertext can be explicitly verified and invalid
ciphertexts can be explicitly rejected.

On the other hand, TESs are length preserving and
so they cannot provide true authentication. The only
guarantee that such schemes can provide is that an
adversarially modified ciphertext will get decrypted to
a random plaintext. This can be detected by a high
level application which uses the data, but the decryption
algorithm itself cannot detect this. In some (though rare)

cases, this may cause some difficulty if the plaintext
were to be truly random since then there would be
no way to detect tampering in the ciphertext. Thus, a
TES is unable to provide true authentication. The type
of authentication that they provide has been termed as
“poor man’s authentication” in [15].
Limitations: It is to be noted that sector-level mix-and-
match apply to disk encryption schemes irrespective of
whether a TES or a DAE scheme is used. This can be
seen as follows. Suppose there are two sectors having
addresses add; and add;. An adversary makes two plain-
text queries: the first query is to encrypt a string w; to
the first sector and a string ws to the second sector; the
second query is to encrypt z; and zy to the first and
the second sectors respectively. This creates ciphertexts
Ul for (addl,wl); (%) for (addg,wg); Y1 for (addl,xl);
and yo for (addq, y2). Possessing (u1,u2) and (y1, y2), the
adversary can now create the ciphertexts u; for the first
sector and y» for the second sector. Decryption of this
ciphertext results in the data w; for the first sector and
for the second sector. Since this data was never written
to the disk, this defeats the security of the scheme.
Thus, both TES and DAE based disk encryption
schemes ensures security only at the granularity level of
a sector. Viewed across multiple sectors, neither schemes
provide proper security. Having said this, we would
like to point out an important difference in the way
an adversary would have to carry out the above attack
depending on whether TES or DAE is employed. With
a TES, the adversary can simply swap the user data
portions of the two sectors as mentioned above leading
to a successful attack. When a DAE is applied, the tags
are written to a portion of the disk which is separate
from the user data portion. So, to mount a successful
mix-and-match attack, the adversary would be required
to access both the user data portions along with the
control portions of a sector. To some extent, this makes
the attack a little more difficult to mount.

5.2 Gains and Loses

Loss of space: As argued above, it is technically feasible
for disk manufacturing companies to modify the physi-
cal organisation of a disk to create space for storing the
tag produced by a DAE scheme. Needless to say, the
extra information stored in form of a tag will mean loss
of space for storing user data. A DAE scheme produces
a tag of fixed length for each plaintext encrypted. Thus if
one fixes the tag length to A bits then for each plaintext
of ¢ bits the ciphertext will be (¢ + X) bits long. So,
greater the length of the plaintext the less would be the
percentage loss of space.

In case of disk encryption, the length of the plaintext
is also fixed and equals the length of the user data to be
stored in a sector. The hard disks available in the market
have 4096-byte sectors [14] which is an increase over
the previously used 512-byte sectors. This increase in the
sector size makes the use of DAE as a disk encryption



TABLE 1
Extra format overhead

Sector size Tag size (in bits)

(in bytes) 64 [ 9% [ 128
512 1.56% | 2.34% | 3.13%
4096 0.19% | 0.29% | 0.39%
8192 0.09% | 0.14% | 0.19 %

algorithm more appealing, as due to the greater sector
size the total loss incurred in space for storing the tags
is lesser. In Table 1 we show the amount of loss in space
that would take place taking into account various disk
sizes and tag lengths.

Table 1 shows that the extra format overhead for using

a DAE with tag length 128 bits would be a negligible
0.4% for 4096-byte sectors. The security promise of a 128-
bit tag may not be required. It is quite likely that a 64-
bit tag will suffice if the number of times a sector is
encrypted or decrypted between two key changes is not
too high. For 64-bit tags, the overhead would be 0.2%
for 4096-byte sectors.
Gain in efficiency: The current constructions of tweak-
able enciphering schemes fall into three basic categories:
Encrypt-Mask-Encrypt type, Hash-ECB-Hash type, and
Hash-Counter-Hash type. CMC [18], EME [19], and
EME™[16] fall under the Encrypt-Mask-Encrypt group.
PEP [11], TET [17], and HEH [31] fall under the Hash-
ECB-Hash type; and XCB [26], HCTR [37], HCH [12],
HMCH [32] fall under the Hash-Counter-Hash type.

These constructions use a block cipher as the basic
primitive, and in addition, some schemes utilize a uni-
versal hash function which is a Wegman-Carter type
polynomial hash or a more efficient variant known as
Bernstein-Rabin-Winograd hash [32]. The constructions
of the Hash-Counter-Hash and Hash-Encrypt-Hash type
invoke two polynomial hash functions with a layer
of encryption in-between. The Encrypt-Mask-Encrypt
structure consists of two layers of encryption with a light
weight masking layer in-between.

So, the main computational overhead of the Encrypt-
Mask-Encrypt architecture is given by the block cipher
calls, whereas for the other two classes of constructions,
both block cipher calls and finite field multiplications ac-
count for a significant portion of the total computational
cost.

Known DAE constructions require less computational
overhead. This is due to the fact that it is possible to
realize a DAE with a single layer of polynomial hashing
along with a layer of encryption. In comparison, hash-
based TES constructions require two layers of hashing
and a layer of encryption. The operation counts of the
existing TES and DAE constructions are provided in
Tables 2 and 3 respectively.

Usability issues: As mentioned earlier, the best way to
go for low level disk encryption is to implement the
encryption and decryption algorithms to be a part of the
disk controller. Additionally, a mechanism for directly

injecting a key into the disk controller would be required.
The resulting architecture would ensure that the disk
encryption is transparent to the higher level applications
which access the disk. Note that a mechanism for direct
key injection is required irrespective of whether a TES
or a DAE is used for disk encryption.

The direct key injection into the disk controller can be
achieved by having a port in the disk to directly read
the key from a small portable device. Such a device can
be a small USB drive or an RF device. Design of the
key transfer mechanism, however, will require careful
security engineering so that the key is not revealed
during the transfer. While important, these details are
outside the present scope of the work and so we do not
consider them any further here.

6 BCTR: A NEw DAE SCHEME

BCTR uses a special class of polynomial proposed
in [4]. These polynomials were later named as
Bernstein-Rabin-Winograd (BRW) polynomials in [32].
Let X1, Xo,...,X,, € GF(2"), and h € GF(2") then a
BRW polynomial over GF(2") is defined as follows

« BRW,()=0

o BRW, (X)) =X,

e BRW,(X1,X5) =X1h & X,

e BRW, (X1, X2, X3) = (h& X1)(h? & X3) & X3

. BRWh(Xl,XQ, . ,Xm) = BRW;,(Xl, C. ,Xt_l)(ht@

X,) @ BRW,, (Xyp1,..., Xm), if t € {4,8,16,32,...}
and t < m < 2t.

For m > 2, BRW,(X1,. .., X,,) can be computed using
|m /2] multiplications and lg m squarings [4], [32]. Thus,
it requires half the number of multiplications compared
to a normal polynomial.

6.1 The Construction

BCTR is designed to be suitable for low level disk
encryption. In particular, the message space of BCTR is
{0,1}™™ where n is the block length of the underlying
block cipher. Hence a message for BCTR is of fixed
length containing m blocks of n-bits. The tweak space is
{0,1}™ and the cipher space is {0,1}™"** where X is the
desired tag length. Thus, the construction inherently has
restrictions on the message length and the tweak length.
But these restrictions are not of any significance for the
disk encryption application as the messages are always
of fixed length which is the data size of the sector and
which in turn is 4096 bytes for the currently available
disks. The sector address is treated as the tweak, thus the
restriction in the tweak length is also of no consequence.
The encryption and decryption algorithms using
BCTR are shown in Figure 1. The construction requires
a key h for the BRW polynomial and a key K for the
block-cipher. Other than the two keys the encryption
algorithm takes in the plaintext and the tweak and
returns a ciphertext and the decryption algorithm takes
in the ciphertext and tweak and returns the plaintext.



The details of the working of the algorithm are self
explanatory as depicted in Figure 1. It essentially consists
of a BRW hashing in combination with a modified
counter mode which was proposed in [37]. In compari-
son to previous works, the main efficiency improvement
comes from the application of BRW hashing.

To encrypt a message of m blocks, BCTR requires
(m + 1) block cipher calls. In addition to this it requires
|t | 4+ 1 finite field multiplications and computation
of lg(m + 1) squares. Note that, computing squares in
binary fields is much more efficient than multiplication.
Thus, the (m + 1) block cipher calls and the || +1
multiplications constitute the main computational over-
head of BCTR. Same number of operations are required
for decryption.

The construction requires two keys, h the key for the
BRW polynomial and K the block-cipher key. Using
known techniques, it is possible to generate the key
h using the block-cipher key and still obtain a secure
construction, but this would mean one more block-
cipher call or a storage of key related material which
is (almost) the same as storage of an extra key. So, we
decided to keep two independent keys.

As is the case with all DAE schemes, the encryption
algorithm requires two passes over the data, one for
computing the tag 7 and other for generating the ci-
phertext. The ciphertext is generated using a counter
type mode of operation which is fully parallelizable. For
decryption, in practice, two passes are not required. As
the counter mode and the computation of 7 can be done
in parallel. Thus the construction offers ample flexibility
for an efficient parallel implementation. Also, in an op-
timized hardware implementation the decryption speed
would be significantly better than the encryption speed.
For the application of disk encryption, this property can
be very useful; as in normal usage, a sector which has
been written once is expected to be read multiple times.
Handling length variability: Our definition of BCTR
assumes that messages are all of the same length which
is a multiple of the block length. For the purposes of
disk encryption, this is sufficient. More generally, how-
ever, there can be applications which require to encrypt
variable length messages which are not necessarily a
multiple of the block length. There are standard ways
to handle such situations and we briefly mention the
required modifications.

The main change would be in the application of the
BRW map. This would now be applied to a string which
is a concatenation of the following three strings: the mes-
sage, zero padded to the next multiple of n; a single n-bit
block encoding the binary representation of the length of
the message; and the tweak. Hashing such pre-processed
messages will ensure low differential probability in the
more general case of variable length messages. The other
modification will be to run the counter mode to generate
sufficiently many bits required to encrypt the message.
Comparison to existing TESs: It has been already dis-
cussed in Section 5.2 that the existing TES can be classi-

fied into three basic categories according to the way they
are constructed. They are hash-ECB-hash, hash-counter-
hash and encrypt-mask-encrypt types. For the first two
types (for example TET, HCTR, HCH, XCB etcetera) one
uses two layers of polynomial hashes with a layer of
ECB or a counter mode in-between. For the last type
(example CMC, EME) there are two encryption layers.

To encrypt/decrypt a message/cipher of m blocks the
first two types roughly require m block-cipher calls along
with 2m multiplications. In [32] some new constructions
of hash ECB hash type and hash counter hash type were
proposed which uses a BRW polynomial to compute the
hash and for these constructions about m multiplications
are required. The encrypt-mask-encrypt type algorithms
like EME [19] and CMC [18] require about 2m block
cipher calls and no multiplication.

In Table 2 we compare the number of operations

required for tweakable enciphering schemes for fixed
length messages which uses n-bit tweaks with the num-
ber of operations required for BCTR. From this table, we
can see that encrypting with BCTR will be more efficient
than encrypting by the existing tweakable enciphering
schemes which uses polynomial hashing. A direct com-
parison to CMC/EME is not possible, since this depends
on the relative efficiencies of a block cipher call and a
multiplication. Later we provide implementation results
which indicate that BCTR performs better than encrypt-
mix-encrypt type TESs.
Comparison to existing DAE schemes: Table 3 shows
the operation counts of BCTR compared to some of the
other known DAE schemes. From this it is clear that
BCTR is better than both HBS and BTM. The comparison
to SIV is based on the comparative performance of a
block cipher call versus that of a multiplication. Our
implementation results suggest that multiplication is
faster than a block cipher call. For SIV, however, the
disadvantage is that the sequential CMAC algorithm is
used to perform authentication. As such, there is no good
pipelined implementation of SIV and for this reason we
later do not report implementation results for SIV.

6.2 Security of BCTR
The following result states the security property of
BCTR.

Theorem 1: Let BCTRII] denote BCTR as in Figure 2
where the block cipher Ex() is replaced by a permu-
tation 7 < Perm(n). Let A be an arbitrary adversary
attacking BCTR([II] who asks a total of ¢ queries, then

dae-priv I9m2q?
Advicrd (A) < =5 4)
- 1 9Im?2q?
AV ) < o + = 5)

Note, that for the authentication bound in equation (5),
q includes the final forgery query of A.

The above Theorem states the information theoretic
security bounds for BCTR, i.e., it guarantees security



Algorithm BCTR.EY ;(Py,..., Pn)
1. v+ h-BRWL(P||P||...||Pn||IT) | 1.
2. 17+ Ex(y) 2.
3. forj=1tom 3.
4. R; + Ex (7 ® bin,(j)) 4.
5. Cj — Rj &) Pj 5.
6. endfor 6.
7. return (C1||C2||...]|Cwml|T) 7.

Algorithm BCTR.D}, ;(C1,...,Cm,T)
for j=1tom,

R; + Ex (7 @ bin,(5));

P; Cj (&) R]'
endfor
v < h-BRWyL(P1||P2]] ... ||Pml||T);
’7'/ < EK(’}/)

if 7' =7 return (P, ..., P,,) else return L;

Fig. 1. Encryption and decryption using BCTR.

TABLE 2
Comparison of BCTR with tweakable enciphering
schemes for fixed length messages which uses n-bit
tweak. [BC]: Number of block-cipher calls; [M]: Number
of multiplications, [BCK]: Number of blockcipher keys,
[OK]: Other keys, including hash keys.

[Mode | BC | M] [[BCK][[OK]|
CMC [18] 2m +1 — 1 -
EME [19] 2m + 2 - 1 -
XCB [26] m+1 2(m + 3) 3 2
HCTR [37] m (2m+1) 1 1
HCHfp [12] m+2 2(m —1) 1 1
TET [17] m+1 2m 2 3
Constructions

in [32] using m+1 2(m —1) 1 1
normal polynomials

Constructions

in [32] using m+1|2+2((m-1)/2]| 1

BRW polynomials

[BCTR [m+1[1+[m+1)/2)] 1 [ 1]

TABLE 3
Comparison between BCTR and DAE schemes for
encrypting m blocks of messages. In the DAE schemes
the operation counts are based on only one block of
tweak. [BC]: Number of block-cipher calls; [M]: Number
of multiplications, [BCK]: Number of blockcipher keys,
[OK]: Other keys, including hash keys.

Mode | [BC] (M) [BCK][[OK]
SIV [30] |2m +3 — 2 | _
HBS [21] | m + 2 m+3 1| -
BTM [20]] m + 3 m 1| -
[BCTR  [m+1i+[(m+1)/2]] 1 [ 1]

of BCTR when the blockcipher is considered to be a
uniform random permutation. The corresponding com-
plexity theoretic bounds can be easily derived from the
above theorem. We prove Theorem 1 using the standard
game playing technique as used in [12], [18], [19], [21].
The complete proof is provided in Appendix B.

7 HARDWARE IMPLEMENTATION OF BCTR

In this section we present an optimized hardware archi-
tecture of BCTR and provide experimental performance
data of the architecture. We also provide performance
comparison of BCTR with other feasible architectures for
disk encryption.

J i
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Fig. 2. Architecture of BCTR-2

7.1

We develop our architecture keeping in mind high
end FPGAs, in particular our target device is Virtex
5 xcbvlx330-2ff1760. The primary goal of the design is
to achieve high speed, but we also try to keep the
area metric reasonable. We optimize the architecture for
message lengths of 4096 bytes. The block cipher is fixed
to be the AES with 128-bit key and so the two keys that
BCTR receives as input are both 128 bits long.

The two main building blocks of BCTR are the BRW
hash and AES, we present details of these modules next.
The BRW hash: In [10] a detailed study of some in-
teresting structural properties of BRW polynomials are
presented. It also reports an optimized hardware archi-
tecture for computation of BRW polynomials. We use
the same ideas in [10] to develop the hash module of
BCTR. The architecture reported in [10] is for computing
BRW polynomials on 31 blocks (each block of 128 bits)
of input. In our case, the BRW polynomial is to be
computed on 257 blocks, and the final result of the
hash is to be multiplied by the hash key h. The hash

Basic Design Decisions



computation requires computing powers of the hash key
h, these are computed on the fly.

The multiplier used to implement the hash is a
four-staged pipelined Karatsuba multiplier. The registers
were placed after a meticulous re-timing process to
create almost balanced pipeline stages. The number of
stages were selected to match the frequency of the AES,
which is the other significant hardware component of the
architecture. It is to be noted that in [10], a three staged
pipelined multiplier was used. The BRW hash in [10]
was used for the design of the disk encryption modes
HMCH and HEH [32]. Both these schemes requires an
inverse call to the block cipher for decryption, hence
the architectures of these modes include a decryption
core of the AES. The specific implementation of the
decryption core used there had a much higher critical
path compared to the encryption core, and the critical
path of the circuit was given by the AES decryption core.
Hence in [10], a 3-stage pipelined multiplier was used to
match the frequency of the decryption core. In case of
BCTR the AES decryption core is not required, hence
the main aim was to match the critical path of the hash
module with the AES encryption core. This allowed us
to use a four staged multiplier.

The AES: The AES is used in BCTR in the counter mode.

This allows a pipelined AES implementation. The struc-
ture of AES (with 128-bit key) allows a natural 10-stage
pipelined implementation, where each round occupies
a stage. Our AES design closely follows the techniques
used in [5]. In [5], the S-boxes were implemented as
256 x8 multiplexers. This was possible due to special six
input lookup tables (LUT) available in Virtex 5 devices.
One S-box fits into 32 six-input LUTs available in Virtex
5 FPGAs. The design presented in [5] is sequential, we
adapt the ideas in [5] to a 10 staged pipelined AES
encryption core. Some of our designs involves multiple
AES cores, for these designs all AES cores share the same
key generation module.

7.2 Proposed Architecture of BCTR

Two architectures were developed, one using two AES
cores which we call as BCTR-2 and another using a single
AES core which we call as BCTR-1. We will only describe
in detail the architecture of BCTR-2, but we will present
the results of both architectures in Section 7.3.

A simplified architecture of BCTR-2 using two AES
cores is shown in Figure 2. The main components of the
architecture are as follows:

1) Two pipelined AES cores labeled AEScyen and
AESiq4, both cores have one input port labeled
inAES and one output port labeled outAES. The
round keys for both the cores are received from
a single round key generator, which is also shown
in the figure.

2) The block for computing the BRW polynomial
labeled BRW Hash. This component receives the
hash key through the input port H, through inA

and inB it receives the data to be hashed. For the
specific architecture that is used to compute the
BRW polynomial, two data blocks are required si-
multaneously to perform the multiplications, hence
it receives data through two input ports. The out-
put port outH outputs the BRW hash. For details
of the architecture of this block see [10].

3) A counter labeled Counter which has two output
ports labelled odd and even trough which it outputs
odd and even values. We will further denote the
outputs of these two ports as Counter,s; and
Counter,.,, respectively.

4) The multiplexer labeled 1 selects the input of
AESq,qq between output of BRW Hash, 7 ¢
Counter,;; and ™ @ Counter,;;. Here 7 is the
verification tag generated by encryption and 7’ is
the tag to verify the output of decryption which is
fed to the architecture as a part of the ciphertext.

5) Multiplexers labeled 2 and 3 are used to select the
correct inputs for BRW Hash for encryption and
decryption. For encryption, the multiplexers feed
the BRW Hash directly from the data input ports
Iogq and Icyen. For decryption it feeds the xor of
the input ports and the outputs of the AES cores,
i.e., for decryption it feeds the BRW Hash with the
same values as in the output ports O,qq and Ocyen.

6) Multiplexer 4 serves the same purpose as of mul-
tiplexer 1 but it selects inputs for AESeyen.

7) The comparator labeled Comparator is used for the
tag verification during decryption. It receives as
inputs 7 and 7/, and checks if they are equal.

The data flow is controlled by a control unit constructed
using a finite state machine, which is not shown in the
figure. We explain the basic data flow in the architecture
separately for encryption and decryption.

For encryption, first the BRW hash is computed using
plaintext blocks fed in ports I,qq and Icyer, to get v. Fur-
ther, v is processed by AES,44 to produce 7. The value
in register 7 is presented in port 7, as authentication
tag and also is used as an initialization vector in the
counter mode. AES 44 and AEScyen both compute R;
using 7 @ Counter,qq and 7 & Counter.,., as inputs
respectively. The plaintext is fed again in ports I,44 and
Icven and they are xored with R;’s getting the respective
ciphertexts in ports O,qq and Ogyen.-

For decryption, first the architecture receives the tag to
verify in I,4q and it is stored in register 7’ to be used as
IV in the counter mode. AES,qq and AES¢yen compute
R; using 7' ®Counter,qq and 7'& Counter, ., as inputs
respectively. Now the ciphertext in ports I,4q and Ieyen
are xored with the R; to get the plaintexts in ports
Oodd and Ocyen, which are also used as inputs for BRW
Hash. It is important to note that during decryption,
the counter mode and BRW hash can be run in parallel,
this makes decryption faster than encryption. When the
computation of the BRW-hash is finished, 7 is computed
and is compared with 7’ to verify whether the cipher
text was valid.



Timing Analysis of BCTR-2: Now we analyze the be-
havior of the circuit of BCTR-2 in time. In Figure 3(a) a
time diagram for the encryption process is shown, which
clearly shows the possible parallelization. For computing
the value v a BRW polynomial on 257 blocks is computed
which takes 135 cycles, further this result has to be
multiplied by h which takes an additional 4 cycles (as
we use a four staged pipelined multiplier), hence the
total number of clocks required for producing « is 140
(this includes an additional cycle for synchronization).
We use a pipelined AES whose latency is 11 cycles.
When 7 is ready it is fed to AES, after 11 clock cycles
7 is produced which is stored in the register 7 which is
connected to the output 7,. After 7 has been generated
then the generation of the stream R; is started by the
two AES cores simultaneously. The first two blocks of the
stream R; is ready after 11 cycles. After this, in each cycle
two cipher blocks are produced. The first valid block of
ciphertext appear in the output after a latency of 164
clock cycles. All the ciphertext blocks are produced after
128 clock cycles and hence the complete encryption of a
4096 bytes is achieved after 292 clock cycles.

Reset
\ 140 R%
(11T
R, [11 ] 128 |
G 128 J
Latency 164 clock cycles J
Total time 292 clock cycles
(a)
Reset
Store Tag
R 11 ] 128 |
P 128 |
\ 140 |y
v
ILatency 13 clock cycles )
r 1
Total time 165 clock cycles

(b)

Fig. 3. Timing diagram for BCTR-2: (a) encryption (b)
decryption.

In the encryption process the computation of - cannot
be parallelized with the encryption with AES, but this is
not the case for decryption. This makes the decryption
and verification process very different from the encryp-
tion process. The time diagram for decryption process
is shown in Figure 3(b). As shown in the diagram, the
circuit starts with the computation of the plaintext just
after the tag is stored in the register. As soon as two
plaintext blocks are available the computation of 7 can
be started. The first valid block of plaintext is produced
after 13 clock cycles. The total process, i.e, decryption
and verification is done using only 165 clock cycles
which is much less than the encryption process.
Architectures for EME2 and XCB: We compare the
performance of our architecture with the architectures
of EME2 and XCB, as they are the current standards for

TABLE 4
Summary of the main hardware resources in the
architectures of BCTR-1, BCTR-2, EME2 and XCB

Scheme | Pipelined AES | Pipelined AES |Sequential AES | Pipelined
encryption core |decryption core |decryption core | multiplier
BCTR-1 1 0 0 1
EME2-1 1 1 0 0
XCB-1 1 0 1 1
BCTR-2 2 0 0 1
EME2-2 2 2 0 0
XCB-2 2 0 1 2

disk encryption. For a fair comparison, we developed
two architectures for both EME2 and XCB, we call
them EME2-1, EME2-2, XCB-1 and XCB-2. The design
goal of these architectures were such that EME2-1 and
XCB-1 matches the speed of BCTR-1 and EME2-2 and
XCB-2 matches the speed of BCTR-2. To achieve this,
the architectures require different hardware resources.
A summary of the number of main blocks utilized in
each architecture is presented in Table 4. We describe in
Appendix C some important aspects of the architectures
EME2-2 and XCB-2.

7.3 Results

We implemented BCTR-1, BCTR-2, EME2-1, EME2-2,
XCB-1 and XCB-2 in Virtex 5 xc5vIx330-2ff1760. The
results reported in Table 5 were obtained after place
and route simulation using Xilinx ISE 13.4. In Table 5
we compare performance of BCTR with the implemen-
tations of EME2 and XCB. The performance is measured
in terms of slices, frequency, throughput and throughput
per area (TPA). For BCTR-1 and BCTR-2 there are two
values specified for throughput, cycles and TPA, these
values are for encryption/decryption. For EME2 and
XCB the times required for encryption and decryption
are the same.

In the first part of the Table 5 we present the results
for the basic primitives, i.e.,, the AES cores and the
multiplier, followed by the results of the single-core and
double-core architectures of the modes. It is important to
note that the results regarding the AES cores in the table
include the key generation. When these cores were used
to implement the modes, then regardless of the number
and type of AES cores all of them share the same key
generation module.

We summarize the performance metrics of the archi-
tectures using two AES cores, i.e., BCTR-2, EME2-2 and
XCB-2 next.

1) EME2-2 occupies the largest area, as it requires both
an AES encryption core and an AES decryption
core. In addition to the slices shown in the Table,
EME?2 requires four block RAMs to store the in-
termediate values. No other architecture requires



TABLE 5
Performance of BCTR, EME2 and XCB on Virtex-5 device. AES-PEC: AES pipelined encryption core, AES-PDC:
AES pipelined decryption core, AES-SDC: AES sequential decryption core. For BCTR-1 and BCTR-2 the encryption
and decryption times are different thus in the columns Throughput, Clock cycles and TPA the two numbers
represents encryption/decryption. For EME2 and XCB the encryption and decryption times are the same.

Mode Implementation Slices | Frequency | Throughput | Clock TPA
Details (MHz) (Gbits/Sec) cycles (Mbits/Sec)/Slice
AES-PEC 2859 300.56 38.47 1
AES-PDC 3110 239.34 30.72 1
AES-SDC 1800 292.48 3.40 11
128-bit Karatsuba 1650 298.43 38.20 1
Multiplier
BCTR-1 1 AES-PEC 5147 292.67 17.13/31.44 | 560/305 3.33/6.11
EME2-1 1 AES-PEC, 1 AES-PDC | 6500 233.58 13.64 561 2.09
XCB-1 1 AES-PEC,1 AES-SDC 6070 272.75 15.70 569 2.58
BCTR-2 2 AES-PEC 7048 291.52 32.71/57.89 | 292/165 4.64/8.21
EME2-2 2 AES-PEC,2 AES-PDC | 10970 230.56 24.77 305 2.25
XCB-2 2 AES-PEC, 1 AES-SDC | 9752 270.52 28.05 316 2.87

block RAMs. XCB-2 is smaller than EME2-2, but is
still occupies much more area compared to BCTR-2.
Note XCB-2 requires an additional multiplier and
an AES decryption core compared to BCTR-2.

The amount of parallelism that can be exploited
is the best in BCTR-2, this is shown by the least
number of clock cycles required for encryption of
a sector using BCTR-2. XCB-2 requires more cycles
than EME2-2. For decryption, BCTR-2 requires far
less number of cycles compared to XCB-2 and
EME2-2.

BCTR-2 also enjoys the highest frequency com-
pared to EME2-2 and XCB-2. The frequency at-
tained by BCTR-2 is almost the same as that of the
pipelined AES encryption core. EME2-2 runs at the
lowest frequency, as its critical path is given by the
pipelined AES decryption core.

In terms of throughput, BCTR-2 is far better than
XCB-2 and EME2-2. For decryption, BCTR-2 attains
an impressive performance of about 58 Gbits/sec.
The TPA metric is also best for BCTR-2, which
proves that the BCTR-2 architecture attains a very
good tradeoff in terms of speed and the amount of
hardware resources used.

2)

3)

4)

As expected, the single core architectures occupy
much less area than their double core counterparts. The
comparative performance of the single core architectures
is almost the same as that of the double-core architec-
tures, in particular BCTR-1 is superior to XCB-1 and
EME2-1 considering all the important metrics. The TPA
metric for the single core architectures is slightly lesser
than the double core ones.

Thus the results clearly suggests that in terms of
performance BCTR is much superior to IEEE disk en-
cryption standards EME2 and XCB. In Appendix D we
provide some possible architectures for the existing DAE

schemes and compare them with BCTR. There also we
conclude that architectures of the existing DAE schemes
would not attain the performance of BCTR given the
same hardware resources.

8 CONCLUSION

In this paper, we reconsidered the requirement of length
preservation for disk encryption schemes. In existing
disks, physical sectors are already larger than the actual
amount of user data stored in a sector. We argued that it
is feasible for disk manufacturers to change the physical
layout to incur an additional overhead (which is at most
0.4% for 4096-byte sectors) for storing a tag. This opens
up the possibility of using schemes for disk encryption
where the ciphertexts are longer than the plaintexts. The
benefit is that encryption and decryption can be faster.

Consideration of such schemes leads us to discard
the possibility of using nonce-based AE schemes since
the nonce management will become an extremely prob-
lematic engineering issue. We further propose that DAE
schemes are well suited for disk encryption applications.
They provide security at least at the level of a TES and
in fact, can also explicitly reject mal-formed ciphertexts
which a TES cannot.

Continuing along this direction, we presented a new
DAE scheme. This is based on hashing using BRW
polynomials and a counter-type mode of operation of
a block cipher. This DAE scheme is more efficient that
previous schemes appearing in the literature and is faster
than known TES schemes. A concrete implementation
of the new DAE scheme in reconfigurable hardware
is reported. Comparison with implementations of TES
schemes for disk encryption shows the clear superiority
of the new scheme.
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APPENDIX A
DiISK ENCRYPTION STANDARDS

There are two IEEE standards which specifies cryptographic algorithms for disk encryption.

IEEE 1619 2007: This standard specifies an algorithm called XTS. XTS is derived from a previous construction of
Rogaway [28] which was called XEX. XEX is a tweakable block cipher (a notion introduced in [24]) and in [28]
it was shown how such a tweakable blockcipher can be used to construct authenticated encryption schemes and
message authentication codes. XTS is different from XEX by the fact that it uses two keys and later it was pointed
out in [23] that use of two keys were unnecessary. XTS can be seen as a electronic code book mode of tweakable
block-ciphers where each block uses a different tweak, hence the name “narrow block mode”.

As a mode of operation, XTS is efficient, fully parallelizable, and possibly does not have any patent claims. On

the other hand, it is questionable whether XTS provides adequate security for the purpose of disk encryption. For
one thing, there is no scope of authentication using XTS. As a result, trivial mix-and-match attacks are applicable to
XTS. These weaknesses are acknowledged in the standard document itself. The document proves security for XTS
(the validity of the proof has also been contested in [23], where a better proof has been provided), but the proof
only shows that XTS is a secure tweakable block-cipher. This security guarantee is insufficient for assuring secure
encryption of multi-block disk sectors. The concern is well known and has been voiced in other public comments
such as [35].
IEEE 1619.2-2010: This standard specifies two wide block modes. A wide block mode of operation behaves like a
(tweakable) block-cipher with a block length equal to the data length of a sector. This notion is achieved by tweakable
enciphering schemes and the security guarantees provided by TES seems adequate for the disk encryption scheme.
The ciphertext produced by a TES can be shown to be indistinguishable from random strings and are also non-
malleable [18]. So, in terms of security, for the application of disk encryption, wide blocks modes are much more
suitable compared to narrow block modes such as XTS.

The two modes specified in IEEE Std 1612.2-2010 [2] are EME2 (a variant of EME [19]), and XCB. Among the
many available TESs the reasons for choosing EME2 and XCB were not made clear. The studies in [25] show XCB
to be the least efficient mode?. Moreover, security weaknesses in the specification of XCB in the standard were
pointed out in [7]. Finally, both XCB and EME are covered by patent claims.

APPENDIX B
PROOF OF THEOREM 1

First we state some useful properties of BRW polynomials without proof. For the proofs, the interested reader is
referred to [4], [32].
Property 1: If m > 3 and t < m < 2t — 1 then BRW;,(X},...,X,,) is a monic polynomial of degree 2t — 1.
Property 2: Let X = (X1,Xa2,...,Xm), X' = (X1, X},..., X)) € [GF(2™)]™ such that X # X' letY =
BRW; (X1, Xo,...,X;n) and Y/ = BRW,, (X1, X3,...,X].). Then for every fixed a € GF(2")

2m —1
The probability is taken over the random choice of h.
For proving Theorem 1 we also use the following lemma.
Lemma 1: Let X = (X1,Xo,...,Xm), X' = (X{,X5,..., X)) € [GF(2™)]™ such that X # X' Let Y =
hBRW;, (X1, X5, ..., X,,) and Y’ = hBRW,, (X1, X}, ..., X,,). Then for every fixed ¢ € GF(2")
Pr[Y &Y' = 6] < 22—75
The probability is taken over the random choice of h.
The proof easily follows from Property 2 of the BRW polynomials [32].
Proof of Theorem 1: To prove the security of BCTR[II] we replace the the block cipher E in the construction of
Figure 1 by a permutation = chosen uniformly at random from II = Perm(n). We call the encryption function of
BCTR[I] as Ej ., where h & {0,1}™ is the key for the BRW polynomial. We prove the privacy bound first. We
consider the game playing technique. We briefly discuss the games below:
1) Game GO: In GO (shown in Figure 4) the block-cipher is replaced by the random permutation 7. The
permutation 7 is constructed on the fly keeping record of the domain and range sets as done in the sub-
routine Ch-7 in Figure 4. Thus, GO provide the proper encryption oracle to .\A. Thus we have:

2. Our experiments presented in Section 7.3 shows EME2 to be worse than XCB. The study in [25] does not include EME2, also the XCB
architecture presented in this paper is better in several respects compared to the one in [25].



Pr [AP=() = 1] = PrA® = 1) ©6)

2) Game G1: Figure 4 with the boxed entries removed represents the game G1. In G1 it is not guaranteed that
Ch-7 behaves like a permutation, but the games G0 and G1 are identical until the bad flag is set. Thus we
have

Pr[A%? = 1] — Pr[A%! = 1] < Pr[A®! sets bad]. 7)
Note that in G1 the adversary gets random strings as output irrespective of his queries. Hence,
Pr[AS! = 1] = Pr[4%() = 1]. (8)

3) Game G2: In Game G2 (shown in Figure 5) we do not use the subroutine Ch-m any more but return random
strings immediately after the A asks a query. Later we keep track of the elements that would have got in
the domain and range sets of the permutation 7 in multi-sets S and R. We set the bad flag when there is a
collision in either S or R. For the adversary the games G1 and G2 are identical. So,

Pr[AS! = 1] = Pr[A%% = 1], )

and

Pr[AS! sets bad] = Pr[.A®? sets bad]. (10)

Subroutine Ch-7(X)

01. y & {0,1}"; if Y € Range, then bad «+ true; | Y & Range, | endif;

02. if X € Domain, then bad < true; | Y <+ n(X) | endif
03. 7(X) «Y; Domain, + Domain. U{X}; Ranger + Range U{Y}; return(Y);

Initialization:
11. for all X € {0,1}" n(X) = undefined endfor
12. Domain, < 0; Range, + 0;
13. bad = false

Respond to the st encryption query (1°; PY, Ps, ..., P;,) as follows:
101. ~° < h- BRW(P?||P5]| ... ||PnlIT?);

102. 7% < Ch-w(~®);

103. fori=1tom,

104. R; + Ch-n(7° @ bin,(i));

105. Cj <+ R @ P;;

106. end for

107. Return (C7||C5]|...||Cms]|T?)

Fig. 4. Games GO and G1
Hence, using Egs. (6), (7), (8), (9) and (10), we have
Pr [AE’“”("') = 1| — Pr[4%() = 1] < Pr[A®? sets bad].
According to the definition of the privacy advantage of A, we have

dae-priv

Advperpy (A) < Pr[A%? sets bad] (11)

Now we need to bound Pr[A%? sets bad]. Assuming that A makes a total of ¢ queries, the elements in the
multi-sets S and R after the interaction of A with G2 terminates would be

S={1":1<s<qtU{r’®bin,(i): 1 <i<m,1<s<q} 12)

R={r’:1<s<qtU{C/aeP’:1<i<m,1<s<q}, (13)



Let COLLD be the event that there is a collision in S and COLLR be the event that there is a collision in R. Using
the facts that v* = hBRW,(P}||Ps||...||P5||T°) and 7%,C? are uniform random elements of {0,1}", we have the
following:
1) For1<s,s <gand s # ¢, Prly* = 4%] < 2(m+ 1)/2" (see Lemma 1).
2) For 1 < 5,8 < ¢, 1 <4, <m,and s # s, Pr[r* @ bin, (i) = 7% @ bin,(i')] < 1/2", as 75,7° are uniform
random elements in {0, 1}".

3) For 1 <s<gq,1<4i,i <m,and i # ¢, Pr[t® @ bin, (i) = 7° & bin,, (¢')] = 0.

4) For 1 < s<gq,1<i<m,Pr[y* =7°dbin,(i)] = 2(m + 1)/2™. To see this, note that v* @ 7° @ bin, (i) is a
non-zero polynomial on % of degree at most 2(m + 1) [32].

5) For 1 <s,s' <gand s # s, Prir* =7°] =1/2".

6) For 1 <s<gq,1<i,’ <m,and i #, Pr[C; @& Pf =C; @ P5] =1/2™.

7) For 1<s<gq,1<i<m,Pr[r° =C{ @ P7] =1/2", as 7° and C} are uniform random elements in {0,1}".
Using the above observations, and the union bound we conclude,

Pr[COLLD] < (q> @m+2) (mq) 1 2mg(m+1)

2 2n 2 )2n AL
7m2q2
14
< 2L (14)
and
1
prcOLLR] = (Ma+a)L
2 2n
2m2q2
< (15)
Thus we have
Pr[A%? sets bad] = Pr[COLLD] + Pr[COLLR]
9m2q2
16
< (16)
This completes the proof of the privacy bound.
Initialization:
S+ R+
For an encryption query (T°; P, Ps, ..., P;s) respond as follows:
CHlIC5] ... ||Che || 7% & {0, 130t
Return CT||C3|| ... ||Crms||T°;
Finalization:

FIRST PHASE

fors=1tog,
¥ b BRW (P3| .|| Pae IT);
S+ SU{¥’L, R+~ RU{r};
fori=1tom,

S+ SU{r*@®bin,(i)}; R+ RU{C; @ P}

end for

end for

SECOND PHASE
bad = false;
if (some value occurs more than once in S) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Fig. 5. Game G2: S and R are multisets.

Proving the authentication bound: To prove the authenticity bound, we assume that .4 makes a total of ¢ queries
including the forgery. The first ¢ — 1 queries are (T'%; P'), (T?%; P?),...,(T97%; P7~1). Finally A attempts a forgery
(T9;,C1|77).



We describe how the the queries of A are responded. As in the previous proof we assume the BCTR construction
to be instantiated with 7 selected randomly from Perm(n). We start with two empty multisets Dom and Ran. In
response to the s query (T, P*)(1 < s < g — 1) the following steps are executed:

1) A uniform random string C*||7° of (m + 1)n bits is returned to A.

2) v° = hBRWy(P?1,Ps,...,P5,Ts) is inserted in Dom and 7° is inserted in Ran.

3) For 1 <i<m, 7° @ bin, (i) is inserted in Dom and (P? & C7?) is inserted into Ran.

Note that this simulation is perfect if there is no collision in the multisets Dom and Rng.

For the final forgery query C?||7%, let C? = C{||C]||---||CY, and P! = C! & 7(79 @ bin, (i), for 1 < i < m. Let
74 = hBRW, (P!, Py, ..., Pd). The adversary is successful in its forgery if 7(y4) = 79. If 47 is distinct from all the
elements in Dom and 79 is also distinct from all elements in Rng, then Pr[r(y?) = 7] = 1/2™. If 49 is distinct from
all elements in Dom and 77 is in Rng then Pr[r(v?) = 79| = 0.

Let COLL be the event that there is a collision in the set Dom U {77} or Rng, then we have

AV = Prfr = ()]
Pr[r? = 7(y?)|COLL] Pr[COLL] + Pr[r? = 7(y?)|COLL] Pr[COLL]

< Pr[r? = n(y9)|COLL] + Pr[COLL]
< zin + Pr[COLL].

It is easy to verify that Pr[COL] < Pr[COLLD] + Pr[COLLR], where COLLD and COLLR are defined in the proof for
privacy. Thus, using Egs. (14), (15), we have

dae-auth 1 9mq
Advisauh) < 4 20

as desired.[]

APPENDIX C
SOME DETAILS ABOUT THE ARCHITECTURES OF EME2 AND XCB

The mode EME2 has two ECB layers with an intermediate masking. The ECB layers can be implemented with
pipelined AES cores. For decryption, ECB in decryption mode is required, hence for efficient decryption functionality
pipelined AES decryption cores are required to be used. For fair comparison with BCTR-2 we implemented EME2-2
with two encryption and two decryption cores. The second layer of ECB in EME2 can only be computed once the
first layer has been completed, thus the intermediate results of the first layer of ECB encryption are required to be
stored. We use block RAMs for this purpose.

XCB is a hash-counter-hash type mode which involves a counter mode of operation sandwiched between two
polynomial hash layers. The main encryption/decryption in XCB takes place through the counter mode, hence AES
decryption core is not required. But, other than the counter mode, one inverse call of the AES is required in XCB
for both encryption and decryption. For this a sequential AES decryption core is utilized. Thus, XCB-2 uses two
pipelined AES encryption cores which does the bulk encryption and in addition a sequential AES decryption core.

The polynomial hash layers in XCB are normal polynomials computed using the Horner’s rule. For a fair
comparison with BCTR-2 we used the same pipelined 128-bit Karatsuba multiplier which we used for the BRW
hash of BCTR. For efficiently computing a polynomial with a pipelined multiplier we used the strategy described in
[10] (see Section 4.4). The second hash function computation in XCB can be computed in parallel with the counter
mode. As the counter mode in XCB-2 is implemented using two AES cores hence in each clock cycle we obtain
two blocks of outputs. As the hash is computed using the Horner’s rule hence only one block can be utilized for
computing the hash in one cycle. This leads to significant loss of cycles. Hence to match the speed of BCTR-2 we
decided to use two multipliers. This allows us to compute the counter mode and one of the hash in parallel.

APPENDIX D
COMPARISON WITH OTHER EXISTING DAE SCHEMES.

The basic paradigm of constructing DAE schemes proposed in [30] is to combine a secure pseudorandom function
with an IV based privacy only encryption scheme. We discuss the possible architectures for some existing DAE
schemes and compare them with BCTR. We do not have real experimental data on the DAE schemes, thus the
comparison that we provide below is based on feasible estimates and our analysis show that the architectures for
existing DAE schemes would not attain the performance of BCTR-2.

The SIV mode was proposed in [30], it uses a CMAC on the plaintext to create a tag, and the tag is used as
an initialization vector for a counter mode of operation. Thus an AES encryption is the main component required



for SIV. The use of CMAC (which is based on the CBC MAC) restricts the mode in terms of usable parallelism,
and a pipelined AES core cannot be used suitably here. Thus, any feasible architecture for SIV would require much
more clock cycles compared to the architectures in Table 5. The CBC-MAC can be replaced by other block-cipher
based parallel MACs like the PMAC. A construction of such a kind can be found in [13]. SIV with PMAC (instead
of a CMAC) can be implemented using two pipelined AES encryption cores, this architecture is expected to have
the same throughput for encryption as BCTR-2, and have an smaller than BCTR-2. But, for getting the decryption
throughput same as BCTR-2 two additional pipelined AES cores would be required, as the extra speedup in the
decryption is obtained by running the MAC and the counter mode in parallel. These additional cores would make
this architecture much more larger than BCTR-2.

Both BTM and HBS use a polynomial hash along with a counter mode. But the hash is the usual polynomial
hash and so the number of multiplications required is roughly twice that of BCTR (see Table 3). To obtain equivalent
speedups as in BCTR-2 an architecture implementing HBS or BTM would require two pipelined AES cores along
with two pipelined multipliers. Thus such an architecture would have an area more than BCTR-2 but less than
XCB-2. The encryption throughput of such an architecture is expected to be the same as that of XCB-2, but the
decryption throughput would be more than the encryption.



