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Abstract. Security of data stored in bulk storage devices like the hard disk has gained a lot
of importance in the current days. Among the variety of paradigms which are available for disk
encryption, low level disk encryption is well accepted because of the high security guarantees
it provides. In this paper we view the problem of disk encryption from a different direction. We
explore the possibility of how one can maintain secure backups of the data, such that loss of
a physical device will mean neither loss of the data nor the fact that the data gets revealed to
the adversary. We propose an efficient solution to this problem through a new cryptographic
scheme which we call as the double ciphertext mode (DCM). In this paper we describe the
syntax of DCM, define security for it and give some efficient constructions. Moreover we argue
regarding the suitability of DCM for the secure backup application and also explore other
application areas where a DCM can be useful.

1 Introduction

It has been estimated that the laptop loss rates are around 2% per year [4], which signifies that an
organization with 100,000 laptops, loses on average several of them per day. A lost laptop amounts
to two severe consequences: (1) the loss of the data stored in it (2) the stored data getting revealed
to an adversary. The later problem has been identified to be more severe than the former one, as
it is rightly argued that if sensitive data gets into the hands of an unwanted person he/she can
potentially cause much greater damage than the one incurred by the mere loss of the data. As a
solution to problem (2) a variety of disk encryption schemes have been proposed in the last few years.
One of the well accepted proposals for disk encryption is low level disk encryption. In low level disk
encryption, the encryption algorithm resides in the disk controller, it views the disk as a collection
of disk sectors and has no knowledge of the high level partitions of the disk like files and directories.
It encrypts a sector before writing it and decrypts a sector after reading it and before sending to
the operating system. In [6] it was pointed out that low level disk encryption can be achieved by a
cryptographic scheme called the tweakable enciphering scheme. Tweakable enciphering schemes are
a special type of block-cipher mode of operation which are length preserving and provides security
in the sense of a strong pseudo random permutation. In the last few years there has been a lot of
activities towards developing secure and efficient tweakable enciphering schemes [2, 3,5-7,13, 14, 16].

Problem (1) has not been adequately addressed in the literature. A trivial solution of prob-
lem (1) is to maintain backups of the data securely. With the advent of cheap storages and backup
technologies which allows synchronous read/write operations even from remote storage devices keep-
ing backup is easy. So one may think that the data always gets written to two storage devices both
equipped with a low level disk encryption algorithm (as provided by tweakable enciphering schemes),
thus loss of one device does not result in any of the consequences stated before. In this paper we
handle the problem of backup but in a bit different way than the trivial solution. In the trivial
solution, as stated, each plain text will have associated with it two cipher texts (possibly different as
one can use two different algorithms or two different keys for encryption in the two different devices),
and in a normal scenario both these ciphertexts would be available to the user. We suggest a scheme
which can exploit this redundancy and thus give rise to more efficient ways to solve this problem.

Our goal is to design a symmetric key encryption scheme which produces two ciphertexts C* and
CR (L and R can be read as local and remote) and a tag 7 for a given plaintext P with the action
of one or more secret keys. The requirements on Ct and CR would be the following:



1. C', CR and P must be of same length.

2. There should exist a very efficient function g such that g(Ct, CR) = P and g should not require
any secret parameter.

3. One must be able to recover P from either Ct or CR by using the secret key and the tag.

The rationale behind such a goal is as follows. For the secure backup scenario, we assume plain-
texts to be disk sectors and the corresponding ciphers would also get written in disk sectors, hence
the two ciphertexts must be of the same length of that of the plaintext. When an user have access to
both Ct and CR then (s)he can very efficiently produce the plain text which produced them using
the function g. If one of C* or CR is lost then with the knowledge of the secret key and the tag, P
can be recovered from one of Ct or CR. The function g should be such that obtaining P through it
should be much more efficient than obtaining P by decryption of either Ct or CR.

Additionally, we require the scheme to be secure in some sense. For arguing about security, given
plaintext P, we rule out the possibility of adversarial access to both Ct and CR. This is not very
un-natural as we may assume that C' is stored in the laptop of an user where as CR gets stored in a
trusted location provided by his/her employer. It may be difficult for an adversary to have access to
both versions of the ciphertext. The security goal for the scheme is that, it should be difficult for any
computationally bounded adversary to distinguish between the outputs of the encryption scheme
from random strings when the adversary can see either Ct or CR along with the tag for messages
of his choice. Additionally by looking at either Ct or CR along with the tag for messages of his/her
choice, (s)he should be unable to produce a new ciphertext tag pair which would get decrypted.

Our Contribution: We analyze the above stated problem and propose a solution to it. Our
solution is a special encryption algorithm which we call the double ciphertext mode (DCM). We
describe the syntax of a DCM and define security for it. We provide a generic construction for a DCM
using a pseudorandom function and a block-cipher, and also a specific construction which requires
only one block-cipher key. We prove security for both the constructions. We observe the similarity
of DCM constructions with a specific class of deterministic authenticated encryption schemes [12].
Finally we mention other application areas where we think a DCM can be useful.

2 Preliminaries and Notations

We denote the set of all binary strings as {0,1}*. For X,Y € {0,1}*, X||Y will denote the concate-
nation of the strings X and Y. For a string X, bin,,(X) will denote the n bit binary representation
of X and len(X) will denote the length of X in bits. Let ty € {L, R}, if ty = L then ty = R, and vice

versa. By X s , we will denote the event of choosing X uniformly at random from the finite set
S.

We shall sometimes view n bit strings as polynomials of degree less than n with coefficients in
GF(2), thus we would view n bit strings as elements of GF(2"). For n-bit strings X, Y, X &Y
will denote the addition in the field, which is a bitwise xor of the strings, and XY will denote
multiplication in the field which can be realized by ordinary polynomial multiplication modulo the
irreducible polynomial representing the field. The monomial x is an element of GF(2") which can be
represented by the n bit binary representation of the integer 2. Given X € GF(2"), by X we shall
mean the multiplication of polynomial X with the monomial € GF(2"). Similarly (1 @ 2)X will
mean the multiplication of (1®z) € GF(2") with X in the field. The operation X can be efficiently
realized with a shift and conditional xor. The operation (1 & z)X would require an additional xor.

An adversary A is an algorithm which has access to one or more oracles and which outputs either
0 or 1. Oracles are written as superscripts. The notation 49192 = 1 denotes the event that the
adversary A, interacts with the oracles O1, O, and finally outputs the bit 1.

A pseudo-random function F' with domain X and range ) is a map F : K x X — ) where K is
the key-space. We generally write Fix(.) instead of F(K,.). Let Func(X,)) denote the all possible
functions from X to Y. If X = {0,1}™ and Y = {0,1}™ then we denote Func(X,Y) as Func(n,m).



The PRF advantage of an adversary A in distinguishing F(.,.) from a random function is defined as
Advgrf(A) =Pr [K S AFE) o 1} —Pr [,0 & Func(X,)) : A7) = 1] .

For pseudorandom functions another adversarial goal is useful which is known as forgery. For
defining forgery for a pseudorandom function F': K x X — ), an adversary A is given oracle access

to Fk(.), where K &k Suppose A makes ¢ queries X;, 1 < i < ¢ to its oracle and gets back
Y; = Fr(X;), 1 < i < g. At the end A attempts a forgery by producing a pair (X,t) such that
A never obtained ¢ as a response to any of his previous queries X; (1 < i < ¢). A is said to be

successful if Fi(X) = t. It is well known that (for example see [15])

1
Pr[Af%() forges] < Advgrf(A) + & (1)
An n-bit block cipher is a function F : K x {0,1}" — {0,1}", where K # 0 is the key space
and for any K € K, E(K,.) is a permutation. We write Ex(.) instead of E(K,.). Let Perm(n)

denote the set of all permutations on {0,1}". For K & K, we require Ek(.) to be a pseudorandom
permutation. The advantage of an adversary A in breaking the pseudorandomness of E(, ) is defined
in the following manner.

AdvEP(A) =Pr |K & K. aBO o 1} —Pr [7‘( & Perm(n) : A™0 = 1].

3 Our Proposal: Double Ciphertext Mode (DCM)

We fix m, n, £ as positive integers. Let, M = {0, 1}, C = {0,1}""*+¢, T = {0,1}" be the message
space and cipher space and tweak space respectively. A double ciphertext mode (DCM) is a set of
four algorithms (K, &, D, g), where K is the key generation algorithm (we shall also denote the key
space with K), £ the encryption algorithm, D the decryption algorithm, and g a special function
which we call the recovery function.

The encryption function £ : K x T x M x {R,L} — C takes in a key, a tweak, a message and
type (which can be either R or L)to produce a cipher. For any given M € M, K € K, T' € T, and
ty € {R,L} we shall write £(K, T, M,ty) as Ex (T, M,ty) or sometimes as Ez’ty(M). Any cipher C
produced by the encryption function from a message M can be parsed as C = C||r, where |C| = |M|
and |7| = £. We define functions cipher and tag, such that given C = C||t € C, cipher(C) = C and
tag(C) = 7. Also, for any M € M, K € K, T € T, tag(E"(M)) = tag(EL R (M)).

D:KxTxCx{R,L} - MU{L} is the decryption algorithm, D(K,T,C,ty) is denoted as
D (T, C,ty) or sometimes as DY (M). And,

'DK(T7C,ty) =M, if C = 5K(T, M,ty),

= 1, otherwise.

The function g is a public function which does not use any key. Let Ct = Ex (T, M,L) and
CR = &€ (T, M,R), then g(cipher(Cl), cipher(CR)) = M. The existence of this special recovery function
g makes a DCM scheme different from other encryption schemes. This function g enables decryption
of a ciphertext given the two versions of it (i.e., both the L and R versions) without the key. For
a DCM to be practically useful, it is required that the recovery function g can be computed much
more efficiently than the decryption function D.

We define DCM with fixed values of m, n and ¢, where n can be seen as the block-length of the
block-cipher. Thus, the message length is fixed to some multiple of n and the tweak length is always
n. We define in this manner keeping in mind the specific application, where a more general definition
is not required. But a DCM can be defined more generally where the message length, tweak length
and tag length are not fixed.



4  Secure Backup Through DCM

The above syntax of a DCM has been constructed keeping in mind the specific need of a secure backup
scheme. In what follows we try to describe how a DCM can be used for keeping secure backup using
an example. This example is meant to be motivational, we do not try to detail technical concerns
for a true implementation of a DCM.

A user (U) works with sensitive data in his office which he stores in his laptop. U cannot afford
to lose the data or to reveal the data to an adversary. The employer of U has a server (S), where U
can keep backups. Let us consider that U mirrors the disk of his laptop with that of the server S.
The disk controllers of the laptop and the server are both are equipped with a DCM instantiated
with the same keys. The type ty is set to L and R in the laptop and the server respectively, i.e., in the
laptop the encryption algorithm £k (., ., L) runs and in the server the encryption algorithm £k (., ., R)
runs. When a plaintext M is to be written in the sector with address T', then cipher(Ex (T, M, L))
and cipher(Ex (T, M, R)) gets written in the sector with address T' of the laptop and the server
respectively. The tag produced by the encryption algorithms in both the server and the laptop
would be the same and one of it have to be stored. Without loss of generality we consider that in
the server, the tag(Ex (T, M, R)) is communicated to the operating system which stores it in another
disk indexed with the address T'. Note that the tag produced for the ciphertext stored in address T'
is not stored in the sector, but it is stored in a different location. The operating system maintains
the tags with the related disk sector addresses through a software solution. Note, that the tags can
be public as this is a part of the ciphertext and need not be stored securely.

Now let us discuss about decryption. In the normal scenario, when nothing unnatural has hap-
pened to the laptop of U, then to recover the contents of sector T', U requests a read from both the
disks of his laptop and the server to get cipher(Ex (T, M, L)) and cipher(Ex (T, M,R)), and recovers
M by the recovery function g. In an un-natural scenario when data in one of the disks is lost then
U applies the decryption function on the disk sector along with the tag to get back the plaintext.

When a plaintext is recovered using the function g then the tag is not used, so the integrity of
the message is not checked. But U can check for the integrity of the messages in the disk sectors at
any point he want. He can schedule regular integrity checks similar to virus scans even if he believes
that the scenario is normal. This implies that U need not trust the server in which his backup is
being kept.

5 Security of DCM

We want to make DCM secure in two ways, in terms of privacy and authentication. Firstly, as stated
earlier, we assume that an adversary attacking DCM should have access to only one of the versions of
the ciphertext, i.e., either the L or the R version. We give the adversary the liberty to see one version
(either L or R) of the ciphertext along with the tag for plaintexts of his choice and we say that the
adversary breaks DCM in the sense of privacy if the adversary can distinguish between the obtained
ciphertexts and random strings. This is the usual notion of privacy as applicable to symmetric
key encryption schemes but here the adversary is restricted in the sense that it can only view one
version of the ciphertext. The other form of security that we want is that of authentication, that is
an adversary must not be able to modify ciphertexts such that the modified ones gets decrypted,
i.e., it should be difficult for an adversary to create a new version of ciphertext and tag pair which
will get decrypted even if he has seen ciphertexts tag pairs of plaintexts of his choice. We formalize
these notions of security next.

Let ¥ = (K,&,D, g) be a DCM scheme. Let A be an adversary attacking ¥. The adversary has
access to the oracle O. O can either be Ek(.,.,.), where K is generated uniformly at random from
K or it can be $(.,.,.) which returns random strings of length equal to the length of the ciphertext.
The adversary can query the oracle with a query of the form (T, M,ty), where M, T denotes the
message and tweak respectively and ty € {L, R}, and thus get back the responses from the oracle. A
has the following query restrictions:



1. A cannot query the encryption oracle with the same message and tweak on both values of ty,
i.e., A is not allowed to see both the L and R versions of the ciphertext, for the same message
tweak pair.

2. The adversary does not repeat a query.

We define the privacy advantage of adversary A as follows:
Advy PR (A) = Pr [K &K AT ) 1] = Pr (A5 1]

To define the authentication advantage we consider that A is given access to the encryption
oracle £k (., .,.) and queries it with plaintexts of his choice and obtains the corresponding ciphertexts.
Finally, A outputs a forgery, which consists of a tweak, a ciphertext and a type (T, C,ty). A is said to
be successful if D (T,C,ty) # L. For querying the encryption oracle A follows the same restrictions
as described above additionally A have the following restrictions:

1. A cannot output (7,C,ty) as a forgery if he obtained C as a response for his query (T, X, ty) to
the encryption oracle.

2. A cannot output (T,C,ty) as a forgery if g(cipher(C), cipher(C)) = X where C was obtained as a
response to his encryption query (T, X, ty).

Both restrictions are to rule out trivial wins. The second restriction is particularly interesting,
note that if C||7 = Ex (T, X,R) then it may be easy for an adversary to guess (or compute) C,
where C||7 = Ex(T, X, L) without querying the encryption oracle, as g is a public function and
g(C,C) = X. Thus A may trivially produce the forgery (T, C||, L) knowing that C||7 = Ex (T, X, R)
and g(C,C) = X.

The authentication advantage of the adversary A is defined as the probability that A does a
successful forgery, in other words

Advgcm'aUth(A) = Pr[ASK(""') forges |

We consider ¥ to be secure, if both Advgcm_priv(A) and Advgcm'auth(fl) are small for every
computationally bounded adversary A.

6 DCMG: A generic construction of DCM

We construct an DCM scheme using two basic primitives a pseudo-random function and a block-
cipher secure in the sense of a pseudo-random permutation. We call our construction as DCMG.

Let F: K1 x {0,1}™"*t" — {0,1}" be a pseudo-random function and E : Ky x {0,1}™ — {0,1}"
be a blockcipher secure in the sense of a pseudo-random permutation. We construct a DCM scheme
using F' and E which we call as DCMG[F, E]. The message space of DCMG is {0,1}™" and the
tweak space is {0, 1}". We describe the encryption and decryption algorithms using DCMG in Fig.
1.

The algorithms in Fig. 1 are self explanatory. Using the pseudo-random function F a tag 7 is
produced which acts as the initialization vector of a counter type mode of operation. The counter
mode produces blocks of random strings, which are mixed with the plaintext. For producing cipher-
texts of two different types the output of the counter mode are mixed in two different way. The
specific way in which this mixing is done is to enable the existence of an efficient function g. In this
case the function g is simple, we define g as g(X,Y) = X @Y. Let Ct||7 = 5};’:‘,& (Py,...,Py) and

CR||r = EIT(’EKQ (P1,..., Pn), It is easy to verify that CL @ C® = Py||...||Pn.



Fig. 1. Encryption and decryption using DCMG[F, E]. K; is the key for the PRF and K3 the block-cipher
key. len(P;) = len(C;) =n, 1 <i < m.

7

8

Algorithm DCMG.EY, (Py,...,Py)|  Algorithm DCMG. DY, (Cy,...,Cp,7)

1. 7« Fr,(P1||P2]| ... ||Pnl|T); 1. forj=1tom;

2. forj=1tom; 2. Rj — Er, (T ® bin,(5));

3. R; «— Ex, (T @ bin,(5)); 3. ifty=1L

4. ifty=1L 4. P (C;oR)(1@x) "

5. Cj — Rj ) (1 ) m)Pj 5. else Pj — (Cj & Ri)xil

6. else Cj — Rj ) Jch 6. endif

7. endif 7. endfor

8. endfor 8. 7 — Fi,(P1||P2||...||1Pwl||T);

9. return (C1||C2||...||Cwm||7T); 9. if 7' =7 return (P,..., Py) else return ;

Characteristics of the construction

. EFFICIENCY: The construction requires a pseudo-random function (PRF) which can be replaced

by a secure keyed message authentication code. Other than the call to the PRF, the scheme
requires m block-cipher calls to encrypt a m block message. Decryption is costlier than encryption
as decryption requires all the operations necessary for encryption plus a multiplication by z=!
or (1+z)~! per block of message. Thus, in total decryption requires m block cipher calls and m
finite field multiplications in addition to the call to the PRF. The inverses which are required to
be computed for decryption can be pre-computed, thus explicit computation of inverses would
not be required for decryption. Also note that the multiplications required can be performed
quite efficiently using pre-computation as one of the operands is fixed, and this operand (either
271 or (1®2)7!) does not contain any key related materials. As required, the function g can
be computed much more efficiently than the decryption function, as for recovering a m block
message with g, one needs to perform only m xors of n bit strings.

. NUMBER OF KEYS: This generic construction requires more than one key, one for the block-

cipher and another (or more) for the PRF depending on the number of keys required by the
PRF. This requirement can be reduced, later in the paper we describe a particular construction
which requires only one block-cipher key.

MESSAGE LENGTH RESTRICTIONS: The construction only works for fixed length messages which
are multiples of the block length of the block-cipher. We do not know any trivial way to remove
this restriction from DCMG, as if there is a broken block (a block of length less than the block
length of the block-cipher)then there could be a ciphertext expansion (see lines 5 and 6 of the
encryption algorithm in Fig. 1). But this restriction is not severe keeping in mind the application,
as it is assumed that the two ciphertexts produced would be disk sectors to be stored in two
different disk volumes.

THE TWEAK LENGTH: The construction is specified for fixed length tweaks, where the tweak
length is the same as the block length of the underlying blockcipher. For the application of the
disk sector encryption, the sector address is considered as the tweak which is likely to be of fixed
length.

Security of DCMG

The following theorems suggests the security of DCMG



Theorem 1. Let T = Func(mn + n,n) and II = Perm(n). Let A be an adversary attacking
DCMGIY, II] who asks q queries, then

2.2
dem-priv m-q
Adv DCMG[Y, ] (A < on (2)
dem-auth 1
Advipendirm(A) < o (3)

Theorem 2. Let F : K1 x {0,1}™"t" — {0,1}" be a PRF and E : Ky x {0,1}" — {0,1}" be a
block-cipher secure in the PRP sense. Let A be an adversary attacking DCMGIF, E] who asks q
queries, then their exists adversaries A’ and A" such that

2

2
T L AdvPTa) + AdvPP (A" (4)

271

dem-priv m
Adv DCM%[F,E] (A <

2 2

dem-auth L m7q
AdvEenGire (A) < ot o

where A’ and A" asks O(q) queries and run for time t + O(q) where t is the running time of A.

+ AdvPT () + AdvEP (A7) (5)

Theorem 1 depicts the information theoretic bound where as Theorem 2 shows the complexity
theoretic bound. Transition from Theorem 1 to 2 is quite standard and we shall not present it in
this paper. We provide the full proof of Theorem 1 in Appendix A. But here we shall provide some
motivation regarding why Theorem 1 is true.

In the construction which is being referred to in Theorem 1 the pseudorandom function F' is
replaced by a function p chosen uniformly at random from 7" = Func(mn+n,n) and the blockcipher
E is replaced by a permutation 7 chosen uniformly at random from I7T = Perm(n). To prove the
privacy bound note that the inputs to the function p would be all new, as the adversary is not allowed
to repeat a query. Also, as p is a random function so the tag (which is the output of p) would be
random. The only way the adversary can distinguish the output of DCMGIY,, IT] from random strings
if there is a collision in the domain or the range sets of the permutation m, the probability of this
collision in m?2¢?/2", which suggests the bound in eq. (2). For proving authenticity we give access
of the random permutation 7 to the adversary, as this permutation 7 is independent of the random
function p the adversary have no added advantage of forgery. With access to m the adversary will
know what would be the input to the random function p for the forgery he produces. Given his
query restrictions, the probability that we can produce a successful forgery would be less than 1/2"
(for details see the full proof in Appendix A).

9 Similarity with Deterministic Authenticated Encryption

Deterministic authenticated encryption (DAE) schemes are deterministic encryption schemes which
provides security both in terms of privacy and authentication. These schemes were first proposed by
Rogaway and Shrimpton [12], where the authors described the syntax of the DAE along with the
security requirements and a generic construction which they called as the Synthetic Initialization
Vector (SIV) mode. The SIV mode construction uses a secure IV based privacy only encryption
mode like the counter mode or the CBC mode along with a special type of pseudorandom function
which takes as input a vector of binary strings. Let {0,1}** denote the space for all vectors of
binary strings, and if X and Y are vectors such that X = (Xy,..., X)) and Y = (Y1,..., V),
then [X,Y]] = (X1,..., Xm, Y1,..., Yir). The SIV mode SIV[F, Priv] is constructed using a pseudo-
random function F : Ky x {0,1}** — {0,1}" and a privacy only encryption scheme Priv = (K3, E, D)
where Cy is the key space, E : Ky x {0,1}™ x {0,1}* — {0,1}* is the encryption algorithm and
D : Ky x {0,1}™ x {0,1}* — {0,1}* is the decryption algorithm. For an initialization vector IV,
and key K the encryption and decryption algorithms are written as E}}V() and Dﬁ(V(.) respectively.
The SIV[F, Priv] construction is shown in Fig. 2.



Fig. 2. Encryption and decryption using SIV[F,Priv]. K; is the key for the PRF and K> the key for the
privacy only encryption scheme E. The header T is a vector of binary strings.

Algorithm SIV.Encrypti, x,(P)| Algorithm SIV.Decrypti, s, (C,7)

I 7 Fi,(IP.T)) 1. P=D,(C);
2. C<—ETK2(P% 2. T/:FKl([[PvT]D§
3. return C||r; 4. if 7' = 7 return P else return L;

One can note the similarity between the generic construction of a DCM with that of the SIV
scheme. A SIV scheme which uses the counter-mode for the secure privacy only scheme can be
suitably re-worked to make a DCM following the construction in Section 6. The stream of random
bits which would be generated by the counter mode needs to be xor-ed with the plaintext in two
different ways to get the two different versions of the ciphertext. But in the generic DAE scheme as
described in [12] any privacy only scheme can be used and also have the provision of vector headers
(headers are equivalent to the tweak), so we do not use the syntax of a DAE to define DCM, but we
just note the similarity.

The security of DAE as described in [12] is also similar to that of a DCM, but a DAE adversary
does not query a type to its oracle, as there is no such possibility in case of a DAE. In [12] a combined
advantage for both security and authentication was proposed, which is elegant, but we feel that the
proofs are still simpler if the privacy and authenticity advantages are stated separately, so we define
the privacy and authentication advantages separately.

10 Constructing a DCM Using BRW Polynomials

Here we provide a particular construction of a DCM, where we design the pseudorandom function
using a special type of polynomials called the BRW polynomials. Also our construction requires only
one blockcipher key. We call the construction as DCM-BRW.

10.1 Bernstein-Rabin-Winograd Polynomials

In [1], Bernstein builds upon a previous work by Rabin and Winnograd [11] to define a sequence
of special type of polynomials which are called as the BRW polynomials in [14]. We define BRW
polynomials over GF(2™) as that is what would be useful for us. Let X1, Xo,...,X,, € GF(2"), and
also let h € GF(2™) then BRW polynomials are defined as follows

— BRW,() =0

~ BRW,(X1) = X

— BRW,, (X1, X2) = X1h & Xo

- BRWh(Xl,XQ,Xg) = (h@Xl)(h2 @XQ) @Xg

- BRW]—L(X17X27 R ,Xm) = BRWh(Xl, R ,Xt_l)(ht@Xt)@BRWh(Xt+1, R 7Xm)7 ift € {4,8, 16,32, .. }
and t < m < 2t.

Next we state some of the important and useful properties of BRW polynomials without proof. The
interested reader is refered to [1, 11, 14]

Property 1. i m > 3 and t < m < 2t — 1 then BRW,,(X,..., X,,) is a monic polynomial of degree
2t — 1.

Property 2. For m > 2, BRW, (X7, ..., X,,) can be computed using |m/2| multiplications and 1gm
squarings.



Property 3. Let X = (X1, Xo,...,Xm), X = (X, X},...,X],) € [GF(2")]™ such that X # X'. Let
Y = BRW;, (X1, Xo,...,X,,) and Y' = BRW,, (X1, X%, ..., X/ ). Then for every fixed a € GF(2")

(2m —1)

PrY @Y’ =a] =

The probability is taken over the random choice of h.

For the construction that we present next property 2 would be important to see the efficiency of
out construction and property 3 would be important to prove the security of the construction.

10.2 The Construction

The generic construction DCMG that we proposed in Section 6 uses a pseudorandom function along
with a block-cipher in a counter type mode of operation. In the specific construction DCM-BRW
we replace the general pseudorandom function with a specific pseudorandom function which uses a
BRW polynomial. The encryption and decryption algorithms using DCM-BRW are shown in Fig.
3. The construction requires two keys, a key h for the BRW polynomial and a key K for the block-
cipher. Other than the keys the encryption algorithm takes in the plaintext, the tweak and the type
and returns a ciphertext and the decryption algorithm takes in the ciphertext, tweak and type and
returns the plaintext. The details of the working of the algorithm are self explanatory as depicted
in Fig. 3. For this construction it is required that the irreducible polynomial representing the field
GF(2™) is primitive.

Fig. 3. Encryption and decryption using DCM-BRW.

Algorithm DCM-BRW.E, Y(P,...,Py)|  Algorithm DCM-BRW.D, (C1,...,Crm,7)

1. a:EK(O);ﬁ:EK(l); 1. a:EK(O);BHEK(l);

2. v« h-BRWyL(P1||P2]]...||Pnl||T) 2. for j=1tom,

3. T—Ex(v®a); 3. Rj « Bx(r @2’ B);

4. for j=1tom 4. ifty=1L

5. R; — Ex (Tt ® 273) 5. P~ (CioRH)1@z) !

6. ifty=1L 6. else P; «— (C; ® Rj)z™"

7. Ci—Ri®(1dx)P; 7. endif

8. else U — R; ® xF; 8. endfor

9. endif 9. v« h-BRWL(P1||P:]|...||Pml||T);
10. endfor 10. 7' — Ex(y® )

11. return (C1]|C2]]...||Cm]||T) 11. if 7' = 7 return (P,..., Py) else return L;

From property 2 of the BRW polynomials one can infer that to encrypt m block of messages
DCM-BRW requires L’”T'HJ + 1 multiplications and lg(m + 1) squarings. Computing squares in
binary fields are much more efficient than multiplication. In addition it requires (m -+ 3) block-cipher
calls. Out of these (m+3) block-cipher calls two can be pre-computed, but this would amount to the
requirement of storage of key related materials which is not recommended. The construction requires
two keys, h the key for the BRW polynomial and K the block-cipher key. Requirement of a single
block-cipher key is what is important, as for multiple block-cipher keys one needs to have different
key schedules which may make an implementation inefficient when implemented in hardware. One
can probably generate the key h using the block-cipher key and still obtain a secure construction,
but this would generally mean one more block-cipher call or a storage of key related material which



is same as storage of an extra key. Also having a different key for the polynomial provides more
flexibility during changing of keys. So, we decided to keep the block-cipher key independent of the
key for the BRW polynomial.

The constructions requires two passes over the data, one for computing the tag 7 and other for
generating the ciphertext. The ciphertext is generated using a counter type mode of operation which
can be parallelized, also a and 3 can be computed in parallel with the BRW polynomial. Thus the
construction offers flexibility for efficient pipelined implementation. Also, for an efficient hardware
implementation the only non-trivial blocks that are needed to be implemented are a finite field
multiplier and a encryption only block-cipher. So, it is expected that a hardware implementation
will have a small footprint.

10.3 Comparisons

To our knowledge we do not know of any other existing cryptographic scheme which provides the
same functionality that is provided by a DCM. As mentioned before one can use a tweakable enci-
phering scheme to do secure backup, by writing the cipher in two different locations. Also, a certain
class of DAE schemes can be used for constructing a DCM as mentioned in section 9. Hence, we
compare the efficiency of DAE-BRW with existing tweakable enciphering schemes (TES) and DAE
constructions. As DCM is completely a different primitive compared to either a TES or a DAE
so these comparisons should be interpreted carefully, in particular we want to make explicit the
following points before we present the real comparisons:

1. Any DCM scheme is not meant to be a competitor for any existing TES. The security guarantees
that a TES provides are completely different from that of DCM. A TES is tag-less, but one needs
to store a tag for any DCM scheme which amounts to extra storage. Moreover, the property of
key-less recovery using the function g cannot be provided by a TES. Thus the comparison only
point out the case of efficiency, but the difference in functionality and security guarantees should
be considered while interpreting the efficiency comparisons.

2. Similarly, a DAE scheme which was proposed as a solution for the key-wrap problem [12] does
not provide the security or functionality of a DCM. But as mentioned in section 9, a certain class
of DAE schemes can be modified to obtain a DCM. Also the DCM-BRW can be modified to make
it a DAE, the only modification required would be to output R; @ P; (refer to the encryption
algorithm in Fig. 3) instead of mixing R; in two different ways with the plaintext to obtain two
ciphertext. With this modification DCM-BRW would be converted into a secure DAE scheme
which works on single block headers. But this is not the point that we are trying to focus here.
The comparisons with DAFE are meant to show that how efficient DCM-BRW would be compared
to other possible constructions of DCM which can be easily derived by modifying existing DAE
constructions. The efficiency in our construction compared to other DAE constructions comes
from the use of BRW polynomials which require less multiplications.

COMPARISON WITH TWEAKABLE ENCIPHERING SCHEMES: Tweakable enciphering schemes which
has been proposed as a solution to the low level disk encryption problem can be classified into three
basic categories according to the way they are constructed. They are hash-ECB-hash, hash-counter-
hash and encrypt-mask-encrypt types. For the first two types ( for example TET, HCTR, HCH,
XCB etc.) one uses two layers of polynomial hashes with an ECB or a counter mode and the last
type (example CMC, EME) uses two encryption layers. To encrypt/decrypt a message/cipher of m
blocks the first two types roughly require m block-cipher calls along with 2m multiplications. In [14]
some new constructions of hash ECB hash type and hash counter hash type were proposed which
uses a BRW polynomial to compute the hash, for these constructions about m multiplications are
required. The encrypt-mask-encrypt type algorithms like EME [7] and CMC [6] require about 2m
block cipher calls and no multiplication. In Table 1 we compare the number of operations required
for tweakable enciphering schemes for fixed length messages which uses n bit tweaks with the number
of operations required for DCM-BRW.



Table 1. Comparison of DCM-BRW with tweakable enciphering schemes for fixed length messages which
uses n bit tweak. [BC]: Number of block-cipher calls; [M]: Number of multiplications, [BCK]: Number of
blockcipher keys, [OK]: Other keys, including hash keys.

[Mode | BC] | [M] [[BCK][[OK]]
CMC [6] 2m+1 — 1 —
EME [7] 2m +1 — 1 —
XCB [10] m+1 2(m + 3) 3 2
HCTR [16] m (2m+1) 1 1
HCHIp [3] m+ 2 2(m —1) 1 1
TET [5] m+1 2m 2 3
Constructions

in [14] using m+1 2(m —1) 1 1
normal polynomials

Constructions

in [14] using m+1[2+2[(m—1)/2] 1

BRW polynomials

[DCM-BRW [m+3[1+[(m+1)/2]] 1 [ 1]

From Table 1 we can see that encrypting with DCM-BRW would be much more efficient than

encrypting by any of the existing tweakable enciphering schemes. But, it is to be noted that the
security guarantee that a tweakable enciphering scheme provides is very different from that provided
by a DCM, hence this comparison needs to be appropriately interpreted.
COMPARISON WITH DETERMINISTIC AUTHENTICATED ENCRYPTION SCHEMES: As mentioned in
Section 9, deterministic authenticated encryption (DAE) schemes which uses counter mode of op-
eration can be easily converted into a DCM scheme by only using additional xor operations. There
are three DAE schemes reported till date. The SIV mode [12] uses CMAC along with the counter
mode, and [8,9] uses a variant of a polynomial hash with a counter mode. All these schemes can
be reworked to construct a DCM. But as evident from Table 2 DCM-BRW would be much more
efficient than any of them. For the DAE schemes the operation counts shown in Table 2 are based
on only one block of tweak.

Table 2. Comparison between DCM-BRW and DAE schemes for encrypting m blocks of messages. In the
DAE schemes the operation counts are based on only one block of tweak. [BC]: Number of block-cipher calls;
[M]: Number of multiplications, [BCK]: Number of blockcipher keys, [OK]: Other keys, including hash keys.

[Mode [ [BCT | [M] [BCK]J[OK]]|
SIV[12] [2m+3 — 2 | —
HBS [9] m+ 2 m+3 1 -
BTM [8] |[m+3 m 1 [ =

[DCM-BRW|m +3[1+[(m+1)/2]] 1T [ 1 ||

11 Security of DCM-BRW

The following theorem specifies the security of DCM-BRW.
Theorem 3. Let II = Perm(n). Let A be an adversary attacking DCM-BRW(II] who asks q
queries, then

. 2 2
Advdcm—prlv ](A) < 14m=q (6)

DCM-BRW[IT — on



dem-auth 1 18m?¢?
Advpar grwm (A) < ST T (7)

Theorem 4. Let E : K x {0,1}™ — {0,1}" be a block-cipher secure in the PRP sense. Let A be an
adversary attacking DCM-BRW/E| who asks q queries, then their exists an adversary A’ such that

14m?2g¢?

o
Adve R (A) < —5— + AdvEP(A) (8)

- 1 18m?2q?
Advg%%.%lg\%w] (A) <2AdviP(A) + ot % (9)

where A’ asks O(q) queries and run for time t + O(q) where t is the running time of A.

Transition from Theorem 3 to Theorem 4 is quite standard, we provide the proof of Theorem 3
in Appendix B. The proof uses the standard game playing technique as used in [3, 6, 7], particularly
it resembles the proof presented in [9].

12 Another Possible Use of a DCM: Secret Sharing with Authority

Here we describe a different scenario other than secure backup where DCM can be useful. Consider
that the military general (A) wants to share a secret with his subordinate (B) who is to join the
battalion in the field. A should be able to recover the secret without the consent of B but B should
not be able to recover the secret without the consent of A. One of the solutions to this may be that
A encrypts the secret and gives it to B and reveals the key to B when A feels that B needs to know
the secret. But this involves revealing a key, which can have important consequences when A and B
are geographically separated. We propose a solution through a secure DCM as follows. For a secret
M, A computes the encryption of M using both the types ty = R and ty = L and gives one of the
cipher without the tag to B. A can decrypt the secret using his key and tag at any time (s)he desires
and when (s)he wants B to know the secret then (s)he reveals his/her cipher to B and thus B can
recover the secret using the recovery function g.

13 Conclusion

We studied a new type of cryptographic scheme called the Double Ciphertext Mode. We gave a
generic construction and a particular construction using BRW polynomials. We also explored some
applications where this mode can be useful. We identify some interesting problems which we plan
to investigate in the context of DCM in future:

1. Our construction does not work for messages whose lengths are not multiples of the block length
of the block-cipher, a construction which overcomes this restriction may be interesting.

2. A generalization of the DCM scheme into a multiple ciphertext mode where more than two
ciphertexts are produced may be interesting.
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A Proof of Theorem 1

To prove the security of DCM[T,, IT] we replace the pseudorandom function F' in Fig. 1 by a function
p chosen uniformly at random from 7" = Func(mn + n,n), and the block cipher E by a permutation
7 chosen uniformly at random from IT = Perm(n). We call the encryption function of DCM([Y,, IT]
as £, . We consider that A interacts with the game DCM1 as depicted in Fig. 4. Notice that in
DCM1, the proper oracles for A are provided, the random function p and the random permutation
7 are constructed on the fly using the subroutines Ch-7(.) and Ch-p(.) respectively. The domain and
range sets of the permutation 7 are maintained in the sets Domain, and Range, respectively, and
appropriate checks are made so that the subroutine Ch-7(X) indeed behaves like a permutation.
No checks are necessary in case of Ch-p(X), as according to the query restrictions of A, Ch-p(.) is
always called with a fresh (new) input.

For a game G, let Pr[AY = 1] denote the probability that A outputs 1 by interacting with the
game G. Then we have,

Pr [A0r () 5 1] = PaAPOM 5 1) o

We modify game DCM1 by deleting the boxes entries in Fig. 4 and call the modified game as DCM2.
By deleting the boxed entries it cannot be guaranteed that Ch-7 is a permutation as though we do
the consistency checks but we do not reset the values of Y in Ch-7(.). Then the games DCM1 and
DCM2 are identical except when the bad flag is set, thus we have

Pr[APCMI = 1] — Pr[APCM2 = 1] < Pr[APCM2 sets bad] (11)



Fig. 4. Games DCM1 and DCM2: DCM2 is the game without the boxed entries in the subroutine Ch-()

Subroutine Ch-7(X)

11. y & {0,1}"; if Y € Range, then bad «— true; | Y & Range, |; endif;
12.  if X € Domain, then bad « true; | Y «— 7(X) |; endif
13. 7w(X) < Y; Domain, <— Domain, U{X}; Ranger «— Range, U{Y}; return(Y);

Subroutine Ch-p(M)
4. v E{om
15.  return(Y);

Initialization:
16. Domain, «— Range, «— 0;
17. for all X € {0,1}", 7(X) = undefined endfor
18. bad «+ false

Respond to the s°® encryption query of A, (T°; P7, P5, ..., P5;ty®) as follows:
101, 7 — p(B BT |1 PSIT);
102. for i =1 to m,

103.  R; « m(7° @ bin,(7));

104. ifty®* =L then

105. C; —R;@(1®x)P;,

106. else

107. C; — R ® 2P,

108. endif

109. endfor

110. return (CT||C3||...||Chsl|T%)

Fig. 5. Game DCM3: D, and R, are multisets, which are initially empty. We assume that .4 makes ¢ queries.
Respond to the s encryption query (T°; P§, P, ..., Ps;ty®) as follows

S S S & $ m n
CRNCS|| - NICs |7 = {0, 1} (D)
Return C7||C3]]...||Chs||7T°

Finalization:

FIRST PHASE
for s=1toq
for i =1 to m,
Dy «— Dy U{7° ® bin, (i)}
if ty* =L, then §; — (1® z)P;;
else 0; «— x P}
end if
Ry — R U{C; ® 67}
end for
end for
SECOND PHASE
bad « false;
if (some value occurs more than once in D) then bad = true end if;
if (some value occurs more than once in R,) then bad = true end if.




In the game DCM2, A always gets random strings as a response to an encryption query. This
can be seen in lines 101 and 103 of the game DCM3, where 7° and R; (1 < i < m) gets set to a
random n bit strings. Thus,

Pr[APOM2 = 1] = Pr [A%C) = 1) (12)

So using Equations (10), (11) and (12) we have

oot
Adv oy m (A) = Pr [AEP’“('““) = 1} —Pr [A$(-7~>~) N 1}

< Pr[APM? gets bad] (13)

Now, we make a game which no more use subroutines Ch-7m and Ch-p, and immediately returns
random strings to the adversary in response to his encryptions queries. Later we maintain the
multi-sets D, and R, where we list the elements that were supposed to be inputs and outputs of the
permutation. Finally we check the collisions in the multi-sets D, and R, and if there is any collision
we set the bad flag to true. We call this game as DCM3, which is shown in Fig. 5. The games DCM2
and DCM3 are indistinguishable to the adversary, because in both cases it gets random strings in
response to his queries. Hence the probability with which DCM2 sets bad is same as the probability
with which DCM3 sets bad. Thus we get,

Pr[APM2 sets bad] = Pr[APM? sets bad] (14)
Thus from equations (13) and (14) we obtain

Advdggi&%ram (A) < Pr[APM3 sets bad] (15)

Now our goal would be to bound Pr[AP“™3 sets bad]. We can see in Game DCM3 that the bad
flag is set when there is a collision in either D, or R,. So if COLD, and COLR, denote the events
of a collision in D, and R, respectively then we have

Pr[APM3 sets bad] = Pr[COLD,] 4 Pr[COLR,]. (16)

Now, we shall bound the collision probabilities in the domain and range sets. From Fig. 5 we see
that D, = {7°®bin, (i) : 1 <i<m,1 < s <q}, where 7° is an element chosen uniformly at random
from {0,1}". And, R, = {Cf @67 : 1 <i<m,1 <s <q}, where §7 = (1 ® z)P; when ty* =L and
07 = «P; when ty® = R, and C7 is chosen uniformly at random from {0, 1}".

Thus, the probability of collisions between two elements in D, is given by Pr[COLD,| = Pr[r* &
bin,, (i) = 7' @ bin,,(j)] where s and t are two different queries, 1 < 7,5 < m, this probability is at
most 27", as 7° is always a string chosen uniformly at random from {0, 1}". The number of elements
in D, is equal to gm, thus we have

m2 q2

mq\ 1
Pr[COLD] < ( 9 )2n < gntl (17)

As each C? is chosen uniformly at random from {0,1}™ and R, contains mg elements, hence we
have

2.2

m?q
Pr[COLR] < 277 (18)

Finally we have

o
AdvenPY | (A) < Pr(COLD] + Pr[COLR] <

(19)

which completes the proof for the privacy bound.



Proving the authentication bound: To bound the authentication advantage, we give an oracle access
of the random permutation 7 to the adversary 4. We denote the adversary 4 with an oracle access
to m as A(m). Thus we can say that

dem-auth dcm-auth
Adv Sg%\rl%lfr,n] (A) < Adv lggll\rl%}lfﬁﬂ] (A(m)),

as A without oracle access to m can do no better than A(m). AdvdDCgﬁ%%%U] (A(m)) is bounded
by the probability that A(7) produces a forgery (C,T,ty), such that D, -(C,T,ty) # L. A forgery
(C1]] .. |Cml|T, T, ty) can be successful if p(X||T) = 7, where X = X1||Xa||...||Xm, and X; =
(1®x)7[C; & (T & bin,(i))] when ty = L and X; = 27 1[C; & 7(7 & bin,,(i))] when ty = R.

As A(m) has an oracle access to , so it can compute X for any chosen C. Thus, when it produces
a forgery (T,C,ty) it knows what would be the input to the function p and also the target output
for his forgery. But according to the query restrictions, the adversary never produces (T, C||7,ty) as
a forgery if it obtained C||7 as an reply to an encryption query of the form (T, X,ty). Also it does
not produce (T, C||7,ty) as a forgery if it obtained C||7 as a response to its query (T, X,ty), where
g(C,C) = X. Thus either the input X||T to p is new or the output 7 is new, thus the probability
that p(X||T) = 7 is at most 1/2™, hence we have

IN

dcm-auth dcm-auth
Adv S:gifé%r,n] (A) < Adv Scrjrll\d%lfr,m (A(m)) (20)

1
27.
Which completes the proof. [}

B Proof of Theorem 3

Before proving Theorem 3 we shall establish two results which would be useful for us in proving the
theorem.

Lemma 1. Let X = (X1, Xo,..., X)), X' = (X1, X5,..., X)) € [GF(2™)]™ such that X # X'. Let
Y = hBRW,, (X1, Xa,..., X)) and Y' = hBRW,, (X1, X3, ..., X],). Then for every fized 6 € GF(2™)

2
Py @Y =6 < o7,

The probability is taken over the random choice of h.

This easily follows from property 3 of the BRW polynomials as stated in Section 10.1 [15].
For a permutation 7 The following result suggests that fj, (.,.) is a pseudorandom function.

Lemma 2. Let w & Perm(n), and h & {0,1}™. Let fr =(.,.) be a function such that given an input
(X,T) € {0,1}"™ x {0,1}", it returns 7(hBRW(X||T) @& =(0)). Let B be an prf adversary attacking
fn=(.s.) and B asks a total of q queries. Then

Adv?rf(B) =Pr |Brr) = 1] —Pr [p & Func(mn + n,n) : A?0) = 1}

4mg?
27’1

Proof. We use the game playing technique. Consider the games FO and F1 as shown in Fig. 6.
The difference between the two games is that in FO outputs of the permutation 7 is used which is
constructed in the fly by the subroutine Ch-7() as shown Fig. 4. In game F1, the boxed entries of
Ch-7() as shown Fig. 4 are removed. These games run in the same way until the bad flag is set.
Hence,

Pr B = 1] — Pr [B"! = 1] < Pr[B"! sets bad].



Fig. 6. Games F0O and F1. In game FO the subroutine Ch-7() as in game DCM1 (i.e. with the boxed entries
in Fig. 4) is used. In game F1 the subroutine Ch-7() as in game DCM2 is used (i.e. without the boxed entries
in Fig. 4).

Initialization:
01. for all X € {0,1}" 7(X) = undefined endfor
02. EZ & {0,1}"™; Domaing, < Domain, U{0}; Ranger «— Ranger U{EZ}
03. bad « false

Respond to the s query (Xi[[X35]|...|| X5, T%) of B as follows:
11. t° — BRW,L(XT||X5]] ... [| Xo|IT?);

12. 7%« Chr(t* @ EZ)

13. Return (77)

Also, the responses obtained by B in game F1 are elements selected uniformly at random from {0, 1}".
As B does not repeat a query, hence the outputs received by B in game F1 would be indistinguishable
from those obtained from a function sampled uniformly at random from Func(mn + n,n). Thus,

Pr[B" = 1] =Pr [p & Punc(mn +n,n) : AP0 = 1} :

Hence we have .
AdV?rBRVV(B) < PI‘[BFI sets bad]

Following the construction of Ch-r(), the bad flag in game F1 is set when there is a collision in
the set Domain, or the set Range,. Let us list all the values that gets in the domain and range
sets in the multisets S§ and RR. Then we would have, S§ = {0} U{t* ® EZ : 1 < s < ¢} and
RR ={EZ}U{r® :1 < s < q}. Let COL be the event that there is a collision in SS or in RR.
Then,

Pr[B'! sets bad] = Pr[COL].

Note that for two distinct queries u, v, we have t* = hBRWp (X[ X¥]|...||X%||T), and t¥ =
hBRW, (XTI X3 .. || XEITY) where X{||X¥||... [|X%||T" # XPIXS]] ... [|IX5]||TY. Thus from
Lemma 1 we have Pr[t* = t¥] = 2(m + 1)/2". Also Pr[t* @ EZ = 0] = 1/2" as EZ is a ran-
dom element of {0,1}", and Pr[r* = 7%] = Pr[rt* = EZ] = 1/2", as all 7%, 7¥ and EZ are selected
uniformly at random from {0, 1}". Hence combining the above facts we get

Pr[COL] = <q>2(m“) A (‘1+ 1>1

2 AL 2n 2 J2n
4mq?
2n
Thus, we have
AdvP(B) < 4’;"2, (21)
which completes the proof. [ ]

Proof of Theorem 3: To prove the security of DCM-BRW/II] we replace the the block cipher E in
the construction of Fig. 3 by a permutation 7 chosen uniformly at random from IT = Perm(n). We
call the encryption function of DCM-BRWIII]| as &), , where h & {0,1}" is the key for the BRW

polynomial. We prove the privacy bound first. We consider the same game playing technique as used
in the proof of Theorem 1. We briefly discuss the games below:

1. Game GO: In GO (shown in Fig. 7) the block-cipher is replaced by the random permutation .
The permutation 7 is constructed on the fly keeping record of the domain and range sets as done



in the sub-routine Ch-7 in Fig. 7. Thus, GO provide the proper encryption oracle to A. Thus we
have:

Pr |:A5h,7r(~m-) = 1| = Pr[_AGO = 1]. (22)

. Game G1: Fig. 7 with the boxed entries removed represents the game G1. In G1 it is not
guaranteed that Ch-7 behaves like a permutation, but the games GO and G1 are identical until
the bad flag is set. Thus we have

Pr[A%" = 1] — Pr[A%! = 1] < Pr[A%! sets bad] (23)

Note that in G1 the adversary gets random strings as output irrespective of his queries. Hence,

Pr[AS! = 1] = Pr[A%() = 1] (24)

. Game G2: In Game G2 (shown in Fig. 8) we do not use the subroutine Ch-m any more but
return random strings immediately after the A asks a query. Later we keep track of the elements
that would have got in the domain and range sets of the permutation 7 in multi-sets S and R.
We set the bad flag when there is a collision in either S or R. For the adversary the games G1
and G2 are identical. So,

Pr[AS! = 1] = Pr[A%? = 1] (25)

and
Pr[A%! sets bad] = Pr[A%? sets bad] (26)

Fig. 7. Games GO and G1

Subroutine Ch-m(X)

01. y & {0,1}"*; if Y € Range, then bad « true; | YV & Ranger |, endif;
02. if X € Domain, then bad — true; |Y «— 7n(X) |, endif
03. 7(X) < Y; Domainy < Domain, U{X}; Ranger — Range. U{Y}; return(Y);

Initialization:
11.  for all X € {0,1}" (X ) = undefined endfor
12.  EZ {01} #(0) = EZ;
13.  Domain, < {0}; Ranger «— {EZ};
4. EO & {0,1}"\ {EZ}; n(1) = EO;
15.  Domain < Domain, U {1}; Ranger <— Ranger U{EO};
16. bad = false

Respond to the s encryption query (T°%; Py, Ps, ..., P5;ty®) as follows:
101. 4° «— h- BRW(P{||Ps|| ... ||PLT?);

102. 7° « Ch-n(y°* ® EZ);

103. for i =1 to m,

104. R; « Ch-n(r° @ 2" EO);

105. if ty® = L then C; «— R ® zP};

106. else C; «— R & (x & 1) P/

107.  endif

108. endfor

109. Return (CT||C5]]...||Cms||T°)




Hence, using Eqs. (22), (23), (24), (25) and (26), we have

According to the definition of the privacy advantage of A, we have

Advgccr?g;ré&m] (A) < Pr[A%? sets bad] (27)

Now we need to bound Pr[A%? sets bad]. The elements in the multi-sets S and R would be
S={0,}U{y*@FEZ:1<s<q}U{r*@2'E0O:1<i<m,1<s<q} (28)

R={EZ,EO}U{r°:1<s<qtU{C’®6:1<i<m,1<s<gq}, (29)

where 67 = xP; when ty®* = L and 6 = (x @ 1)P; when ty® = R. Let COLLD be the event that
there is a collision in § and COLLR be the event that there is a collision in R Using the facts that

~v® = hBRW,(P{||Ps]|- .- ||Po,I|T?) and EZ, EO,7°,C§ are random elements of {0,1}", we have
2¢  2mgq q\ (2m +2) mq\ 1 2mg*(m +1)
P LLD| < — —_ —t—
t[Co ]2n+2"+<2> v \2 ) T o
= 1 §m2q2+3mq2+ @+q+q2
2n \ 2 2
and
2)\ 1
Pr{COLLR] = ((Ma+a+2)) L
2 2n
(m2q® + 2mq® + 3mq + ¢*> + 3¢ + 2)
- 2n+1

Then we have

Pr[A%? sets bad] = Pr[COLLD] + Pr[COLLD]
14m?2q?

<
on

(30)
This completes the proof of the privacy bound.

Proving the authentication bound: To prove the authenticity bound, let A be an adversary which
tries to break authenticity of DCM-BRW/II]. Let B be an adversary attacking authenticity of fr
(see Lemma 2 for the description of fr ;). B has an oracle access to fj, «(.,.), additionally let it have
access to another oracle P(.,.) which on input (X,i) returns 7(X @ 2’7 (1)). With access to these
two oracles B can run A by answering its queries in the usual manner. When A outputs a forgery
(T, Y1 ]|Y2|| .. ||Ym]|7, ty), B computes X;, 1 < i < m, using the oracle P(.,.) as follows

Py eY)(lea) tifty=L
Xi= {(P(t,i) ®Y)z! if ti =R

and outputs (X1||Xz2||...||Xm||T,7) as its forgery. Thus we have that

AdvRANh | (4) = Pr{A () forges|
< Pr[Bn =P forges] (31)

Now, we replace this oracle P(.,.) with an oracle $(.,.) which returns strings chosen uniformly
at random from {0,1}" on a query (X,). The difference of the real oracle P and the oracle $(.,.)



Fig. 8. Game G2: § and R are multisets.

Initialization:
S — R — 0
EZ & {0,1}"; EO £ {0,1}" \ {EZ};
§—Su{0,1}; R —RU{EZ, EO};

For an encryption query (T°; Py, Ps, ..., P5s;ty®) respond as follows:

S S S S $ m n
CE|Cs| ... ||CE,s |78 <= {0, 1}(mHDn,
Return C7||C5||...||Chs||T°%;
Finalization:
FIRST PHASE
for s =1 to g,
" b BRW(P{||P5||...||Prs||IT%); 7 & {0,1}";

S—SU{rYER—RU{T}
for i =1 to m,
if ty°* = L then §; = P/
else 6; = (z + 1) P;;
end if
S —SU{r*®z'EO0}; R — RU{C: ® &}
end for
end for

SECOND PHASE
bad = false;
if (some value occurs more than once in §) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

can be detected by B only if the queries of B can produce a collision in the domain or range of the
permutation 7. This means that the difference can be detected by B if there is a collision in the
multisets S or R as represented in equations (28) and (29) respectively. The event of a collision in
these sets were represented by COLLD and COLLR respectively. Thus we have

Pr[Bfn=()P() forges| — Pr[Bfr=()8() forges] < Pr[COLLD] 4 Pr[COLLR]. (32)

Now, the oracle $(.,.) is of no help to B as the random strings that it returns can be generated by
B itself hence,
Pr[B/n ()80 forges| = Pr[B/m=() forges]. (33)

Putting together equations (32), (33) and (30) we have

14 2.2
Pr[BFr =P forges] < Pr[Bm=() forges] + Zlnq
1 dmg®  14m3¢?
. 4
<ot o o (34)

The last inequality follows from Lemma 2 and eq. (1). From eq. (31) and eq. (34) we have

dem-auth 1 18m?¢?
Advion srwm (A) < g T T

as desired. m



