1,115 research outputs found
On Universality in Human Correspondence Activity
Identifying and modeling patterns of human activity has important
ramifications in applications ranging from predicting disease spread to
optimizing resource allocation. Because of its relevance and availability,
written correspondence provides a powerful proxy for studying human activity.
One school of thought is that human correspondence is driven by responses to
received correspondence, a view that requires distinct response mechanism to
explain e-mail and letter correspondence observations. Here, we demonstrate
that, like e-mail correspondence, the letter correspondence patterns of 16
writers, performers, politicians, and scientists are well-described by the
circadian cycle, task repetition and changing communication needs. We confirm
the universality of these mechanisms by properly rescaling letter and e-mail
correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl
Micro-bias and macro-performance
We use agent-based modeling to investigate the effect of conservatism and
partisanship on the efficiency with which large populations solve the density
classification task--a paradigmatic problem for information aggregation and
consensus building. We find that conservative agents enhance the populations'
ability to efficiently solve the density classification task despite large
levels of noise in the system. In contrast, we find that the presence of even a
small fraction of partisans holding the minority position will result in
deadlock or a consensus on an incorrect answer. Our results provide a possible
explanation for the emergence of conservatism and suggest that even low levels
of partisanship can lead to significant social costs.Comment: 11 pages, 5 figure
Weblog patterns and human dynamics with decreasing interest
Weblog is the fourth way of network exchange after Email, BBS and MSN. Most
bloggers begin to write blogs with great interest, and then their interests
gradually achieve a balance with the passage of time. In order to describe the
phenomenon that people's interest in something gradually decreases until it
reaches a balance, we first propose the model that describes the attenuation of
interest and reflects the fact that people's interest becomes more stable after
a long time. We give a rigorous analysis on this model by non-homogeneous
Poisson processes. Our analysis indicates that the interval distribution of
arrival-time is a mixed distribution with exponential and power-law feature,
that is, it is a power law with an exponential cutoff. Second, we collect blogs
in ScienceNet.cn and carry on empirical studies on the interarrival time
distribution. The empirical results agree well with the analytical result,
obeying a special power law with the exponential cutoff, that is, a special
kind of Gamma distribution. These empirical results verify the model, providing
an evidence for a new class of phenomena in human dynamics. In human dynamics
there are other distributions, besides power-law distributions. These findings
demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure
Circadian pattern and burstiness in mobile phone communication
The temporal communication patterns of human individuals are known to be
inhomogeneous or bursty, which is reflected as the heavy tail behavior in the
inter-event time distribution. As the cause of such bursty behavior two main
mechanisms have been suggested: a) Inhomogeneities due to the circadian and
weekly activity patterns and b) inhomogeneities rooted in human task execution
behavior. Here we investigate the roles of these mechanisms by developing and
then applying systematic de-seasoning methods to remove the circadian and
weekly patterns from the time-series of mobile phone communication events of
individuals. We find that the heavy tails in the inter-event time distributions
remain robustly with respect to this procedure, which clearly indicates that
the human task execution based mechanism is a possible cause for the remaining
burstiness in temporal mobile phone communication patterns.Comment: 17 pages, 12 figure
Microwaves from GSM Mobile Telephones Affect 53BP1 and γ-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons
The data on biologic effects of nonthermal microwaves (MWs) from mobile telephones are diverse, and these effects are presently ignored by safety standards of the International Commission for Non-Ionizing Radiation Protection (ICNIRP). In the present study, we investigated effects of MWs of Global System for Mobile Communication (GSM) at different carrier frequencies on human lymphocytes from healthy persons and from persons reporting hypersensitivity to electromagnetic fields (EMFs). We measured the changes in chromatin conformation, which are indicative of stress response and genotoxic effects, by the method of anomalous viscosity time dependence, and we analyzed tumor suppressor p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (γ-H2AX), which have been shown to colocalize in distinct foci with DNA double-strand breaks (DSBs), using immunofluorescence confocal laser microscopy. We found that MWs from GSM mobile telephones affect chromatin conformation and 53BP1/γ-H2AX foci similar to heat shock. For the first time, we report here that effects of MWs from mobile telephones on human lymphocytes are dependent on carrier frequency. On average, the same response was observed in lymphocytes from hypersensitive and healthy subjects
Timing interactions in social simulations: The voter model
The recent availability of huge high resolution datasets on human activities
has revealed the heavy-tailed nature of the interevent time distributions. In
social simulations of interacting agents the standard approach has been to use
Poisson processes to update the state of the agents, which gives rise to very
homogeneous activity patterns with a well defined characteristic interevent
time. As a paradigmatic opinion model we investigate the voter model and review
the standard update rules and propose two new update rules which are able to
account for heterogeneous activity patterns. For the new update rules each node
gets updated with a probability that depends on the time since the last event
of the node, where an event can be an update attempt (exogenous update) or a
change of state (endogenous update). We find that both update rules can give
rise to power law interevent time distributions, although the endogenous one
more robustly. Apart from that for the exogenous update rule and the standard
update rules the voter model does not reach consensus in the infinite size
limit, while for the endogenous update there exist a coarsening process that
drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table
Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.
The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats
The aggregation of cytochrome C may be linked to its flexibility during refolding
Large-scale expression of biopharmaceutical proteins in cellular hosts results in production of large insoluble mass aggregates. In order to generate functional product, these aggregates require further processing through refolding with denaturant, a process in itself that can result in aggregation. Using a model folding protein, cytochrome C, we show how an increase in final denaturant concentration decreases the propensity of the protein to aggregate during refolding. Using polarised fluorescence anisotropy, we show how reduced levels of aggregation can be achieved by increasing the period of time the protein remains flexible during refolding, mediated through dilution ratios. This highlights the relationship between the flexibility of a protein and its propensity to aggregate. We attribute this behaviour to the preferential urea-residue interaction, over self-association between molecules
- …