2,136 research outputs found

    Search for nonresonant Higgs boson pair production in the four leptons plus two b jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2206.10657v2 [hep-ex], https://arxiv.org/abs/2206.10657 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at this http URL (CMS Public Pages). Report number: CMS-HIG-20-004, CERN-EP-2022-114.The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb−1. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier ÎŒ, defined as the ratio of the observed HH production rate in the HH→ ZZ∗b b ÂŻ → 4 ℓb b ÂŻ decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λ HHH with respect to the SM value are investigated. The coupling modifier Îșλ, defined as λ HHH divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < Îșλ < 13.4 (15.0) at 95% confidence level. [Figure not available: see fulltext.].SCOAP3

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at √s = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2205.08582v2 [hep-ex], https://arxiv.org/abs/2205.08582 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures and tables, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-21-006 (CMS Public Pages).An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb−1. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred ÎŒm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD) (varying with m(ZD)) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons. [Figure not available: see fulltext.].SCOAP3

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2301.08096v2 [hep-ex], https://arxiv.org/abs/2301.08096 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-003 (CMS Public Pages).A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t ~1), is presented. The search targets the four-body decay of the t ~1 , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t ~1) and m(χ~10). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t ~1) − m(χ~10) = 10 and 80 GeV, respectively. [Figure not available: see fulltext.].SCOAP3

    Search for CP violating top quark couplings in pp collisions at √s = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2205.07434v2 [hep-ex], https://arxiv.org/abs/2205.07434. It has not been certified by peer review.Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb−1. The search uses two observables, O1 and O3, which are Lorentz scalars. The observable O1 is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while O3 consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model. [Figure not available: see fulltext.].SCOAP

    Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented

    Get PDF
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s\sqrt{s}=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb−1^{−1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: αS_S (mZ_Z)=0.1229 0.0040−0.0050\frac{0.0040}{-0.0050} , the most precise αS_SmZ_Z value obtained using jet substructure observable
    • 

    corecore