60 research outputs found
Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells
The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.This study was supported by Fundació la Marató TV3, Project n° 111431
High Carbohydrate 19-9 Antigen Serum Levels in Patients with Nonmelanoma Skin Cancer and Primary Occult Cancer
Background: Non-melanoma skin cancers (NMSC), despite having a favourable prognosis, present an increased risk of occult malignancies. The aim of this study was the evaluation of the usefulness of the mucinous marker carbohydrate 19-9 antigen (CA 19-9) in the diagnosis of occult cancers. (1) Patients and Methods: This is a case control study in which 480 patients with NMSC and 480 matched control subjects with dermatitis were enrolled; 208 patients with NMSC showed upper-normal CA 19-9 values, and 272 showed under-normal CA 19-9 values. (2) Results: The 208 patients positive for CA 19-9 included 87 with basal cell carcinoma (BCC) and 121 with squamous cell carcinoma (SCC). The 272 patients negative for CA 19-9 included 107 with BCC and 165 with SCC. For the SCC patients, CA 19-9 serum levels were significant in 121 of the patients (positive), 66 of which were affected by cancer; CA 19-9 was within the normal range in 165 patients, of which 30 were diagnosed with cancer. In the SCC patients, the CA 19-9 sensitivity was 68%, the specificity was 70%, the positive predictive value (PPV) was 54% (95%) and the negative predictive value (NPV) was 81%. In the BCC patients, the CA 19-9 sensitivity was 70%, the specificity was 66%, the PPV was 48% and the NPV was 83%. In the dermatitis patients (controls), we observed 121 patients that were CA 19-9 positive, with 15 malignancies, and 359 CA 19-9-negative patients, with three malignancies. (3) Conclusions: To confirm the association between CA 19-9 and an elevated risk of malignancies in NMSC, prospective cohort studies should be performed
Doctoral Thesis of Giulia Malaguarnera
Homocysteine is a sulphur amino acid converted to methionine to a remethylation pathway and to cysteine via transulphuration patway. Its level in the blood increase with age and are associated with several pathologies: cancer, autoimmune disease, cardiovascular and neurodegenerative disorders.
The present thesis has focused on the study of the relationship between elevated levels of homocysteine and the deficiency of his metabolites, focusing on folate, in the severity of diabetic retinopathy (non- proliferative and proliferative).
Then it had been investigated whether retinal Hcy is associated with retinal neurodegeneration. Histopathological, molecular, and biochemical abnormalities have commonalities in Diabetes and Alzheimer s Disease (AD), which has lead to AD recently termed as "Type 3 Diabetes". Therefore, the present study has focused to evaluate the role of homocysteine in animal models of Type 2 Diabetes (Goto-Kakizaki (GK) rats) and Alzheimer Disease (TASTPM transgenic mice)
- …