10 research outputs found

    Modeling of magnetization reversal processes in magnetic circuits of measuring transformers

    Get PDF
    The article describes methods for modeling transient regimes in current and voltage transformers. In most studies measuring transformers are modeled in a stationary mode to determine their metrological characteristics. However, for safe uninterrupted operation of transformers and electrical networks it is necessary to carry out their research in dynamic mode. In particular, the study of the transformers stability to the ferroresonant phenomena occurring during switching of high voltage switches is of practical interest. An algorithm for calculating transient processes in transformers allows to combine field models developed in the software package COMSOL Multiphysics and circuit models developed in the programming environment MATLAB. Special focus is on the approximation of the magnetization curve of transformers. The mathematical and simulation models allow us to investigate transient and steadystate regimes of transformers connected to the external electrical circuits

    Density and Volumetric Properties of Aqueous Solutions of Trimethylamine <i>N</i>‑Oxide in the Temperature Range from (278.15 to 323.15) K and at Pressures up to 100 MPa

    No full text
    Densities of aqueous solutions of trimethylamine <i>N</i>-oxide (TMAO) were measured over the concentration range (0.0875 to 4.3251) mol·kg<sup>–1</sup> at temperatures (278.15, 288.15, 298.15, 308.15, and 323.15) K and pressures (0.101, 10, 25, 50, 75, and 100) MPa. Volumetric properties such as apparent molar volume of TMAO, <i>V</i><sub>ϕ,2</sub>, molar isothermal compression, <i>K</i><sub><i>T</i>,m</sub>, molar isobaric expansion, <i>E</i><sub><i>P</i>,m</sub>, and internal pressure, <i>P</i><sub>int</sub>, of its aqueous solutions were calculated depending on concentration, temperature, and pressure. The volumetric partial properties of TMAO at infinite dilution in water (<i>V</i><sub>2</sub><sup>∞</sup>, <i>K</i><sub><i>T</i>,2</sub><sup>∞</sup>, and <i>E</i><sub><i>P</i>,2</sub><sup>∞</sup>) were also determined. The results were discussed from the standpoint of solute–solute and solute–solvent interactions

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    No full text
    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described
    corecore