33 research outputs found

    Cu(II) and Gd(III) doped boehmite nanostructures: a comparative study of electrical property and thermal stability

    Get PDF
    The present article reports the effect of transition (Cu2+) and rare earth metal (Gd3+) ion doping on structural, microstructural and electrical properties of boehmite nanoparticles. Rietveld refinement is adopted here to refine the x-ray diffractograms for further analyzing the microstructural details and their alteration due to the incorporation of foreign cations. This is probably the first time when dielectric properties of these doped boehmite samples having been reported herein. These samples show remarkably high dielectric constant values which corroborate that doping enhances the microstrain values inside the orthorhombic structure and results in higher crystallographic defects. Enhancement in defect sites causes the augmentation of relative permittivity and ac conductivity. Temperature stability has also been enhanced significantly in our Cu-doped sample. The present study enables us to determine a relationship between crystalline deformation and electrical properties of nanomaterials which may be highly beneficial in fabricating cost-effective energy harvesting devices

    Stacking Order Driven Optical Properties and Carrier Dynamics in ReS2

    Get PDF
    Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principle calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blue-shifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. Our findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order

    Synthesis and biological evaluation of triphenyl-imidazoles as a new class of antimicrobial agents

    No full text
    Newer triphenyl-imidazole derivatives (4a-h) were synthesized in good yields by the reaction of benzil and substituted benzaldehydes in equimolar quantities and refluxing the product with acetyl chloride thereafter. Structures were confirmed by using FT-IR, 1H NMR and 13C NMR spectroscopic methods. All the synthesized compounds were tested for their antimicrobial activity using agar diffusion technique against Gram positive (Staphhylococcus aureus and Bacillus subtilis), Gram negative (Escherichia coli and Pseudomonas aureginosa) as well as Fungal strain (Candida albicans). Interestingly compounds 4a, 4b, 4f and 4h showed significant antibacterial activity, whereas compound 4b was found to have remarkable activity against the fungal strain. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of most active compounds were determined by broth dilution method and compound 4b emerged to have potent activities against most of the strains having MIC in the range of 25-200 µg/mL. To check the possible toxicities of the most active compounds, they were orally administered in rats and the concentration of liver enzymes serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and alkaline phosphatase (ALKP) were determined. Compound 4h showed significant increase in the enzymes level depicting the hepatotoxicity. The structure-activity relationship studies showed the importance of electron withdrawing groups at the distant phenyl ring at ortho and para positions as the compounds having chloro or nitro at these positions tend to be more active than the compounds with electron releasing groups such as methoxy. These compounds may act as lead compounds for further studies and appropriate modification in their structure may lead to agents having high efficacy with lesser toxicity

    Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant <i>Melothria heterophylla</i>

    No full text
    Background: Melothria heterophylla (family: Cucurbitaceae), commonly known as kudari, is used in the Indian traditional medicine to treat various inflammation-associated diseases, such as asthma, arthritis and pain. However, the anti-inflammatory active components of this plant have not been identified yet. The aim of this study was to investigate the potential analgesic and anti-inflammatory activities of a compound, quercetin-3-methoxy-4&#8242;-glucosyl-7-glucoside, isolated from M. heterophylla. Methods: The anti-inflammatory activity was determined using carrageenan- and dextran-induced rat paw edema as well as cotton pellet-induced granuloma in rats, whereas the analgesic activity was analyzed using acetic acid-induced writhing, hot plate and tail flick response in mice. The test compound was orally administered at a dose of 5, 10 or 15 mg/kg. The cyclooxygenase-1 (COX-1)- and COX-2-inhibitory capacity of the test compound was studied by enzyme immunosorbent assay. Results: Quercetin-3-methoxy-4&#8242;-glucosyl-7-glucoglucoside at 15 mg/kg exhibited a maximum inhibition of carrageenan-induced inflammation (50.3%, p &lt; 0.05), dextran (52.8%, p &lt; 0.05), and cotton pellets (41.4%, p &lt; 0.05) compared to control animals. At the same dose, it showed a 73.1% inhibition (p &lt; 0.05) of the pain threshold in acetic acid-induced writhing model. It also exhibited a considerable analgesic activity by prolonging the reaction time of the animals based on hot plate as well as tail flick response. The test compound was found to inhibit COX-1 (IC50 2.76 &#181;g/mL) and more efficiently, COX-2 (IC50 1.99 &#181;g/mL). Conclusions: Quercetin-3-methoxy-4&#8242;-glucosyl-7-glucoside possessed substantial analgesic and anti-inflammatory activities possibly due to inhibition of prostaglandin production, supporting the ethnomedicinal application of M. heterophylla to treat various inflammatory disorders

    Use of “e” and “g” operators to a fuzzy production inventory control model for substitute items

    No full text
    In this paper, a fuzzy optimal control model for substitute items with stock and selling price dependent demand has been developed. Here the state variables (stocks) are assumed to be fuzzy variables. So the proposed dynamic control system can be represented as a fuzzy differential system which optimize the profit of the production inventory control model through Pontryagin’s maximum principle. The proposed fuzzy control problem has been transformed into an equivalent crisp differential system using “e” and “g” operators. The deterministic system is then solved by using Newton’s forward-backward method through MATLAB. Finally some numerical results are presented both in tabular and graphical form

    A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells

    No full text
    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus—(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate—against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G2/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma

    Silver–Nickel Bimetallic Nanowire-Based Transparent Thin-Film Spin-Glass Systems for Magnetic Sensor Applications

    No full text
    Silver–nickel bimetallic nanowire-containing transparent thin films (TFs) were investigated for their electrical and magnetic properties. A facile sol–gel technique followed by an electrodeposition process was used to fabricate these samples. X-ray diffraction and X-ray photoelectron spectroscopy were utilized to characterize the constituent elements and to explain their electrical and magnetic properties. Scanning electron microscopy and transmission electron microscopy provided the details of microstructural features. Zero field cooled (ZFC) and field cooled (FC) studies indicated the existence of spin glass (SG), which was thoroughly investigated following FC and ZFC memory effects along with relaxation dynamic studies. Scaling law and Vogel–Fulcher law substantiated the presence of the SG phase. Magnetodielectric results were explained using Catalan’s model assuming positive magnetoresistance. The magnetic field-dependent charge transport mechanism explained the magnetoelectric coupling and spin transport properties as a function of electric and magnetic fields. A realistic circuit model with contributions from each component as a function of the magnetic field was also discussed considering the Nyquist plot. This study offers useful insights on bimetallic nanowire-based TFs leading to the possible fabrication of magnetic sensor devices
    corecore