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Abstract
The present article reports the effect of transition (Cu2+) and rare earthmetal (Gd3+) ion doping on
structural,microstructural and electrical properties of boehmite nanoparticles. Rietveld refinement is
adopted here to refine the x-ray diffractograms for further analyzing themicrostructural details and
their alteration due to the incorporation of foreign cations. This is probably the first timewhen
dielectric properties of these doped boehmite samples having been reported herein. These samples
show remarkably high dielectric constant values which corroborate that doping enhances the
microstrain values inside the orthorhombic structure and results in higher crystallographic defects.
Enhancement in defect sites causes the augmentation of relative permittivity and ac conductivity.
Temperature stability has also been enhanced significantly in ourCu-doped sample. The present study
enables us to determine a relationship between crystalline deformation and electrical properties of
nanomaterials whichmay be highly beneficial in fabricating cost-effective energy harvesting devices.

1. Introduction

Advancement of humankind put its giant footmark in every branch of science and technology and comes out
withflourishing results like nanoscience and nanotechnologywhich enables us to go to any extent inmaterial
research that is still undiscovered. Nanotechnology and nanoscience is the pioneer of producing significantly
promising nano-materials with applications in various fields of electronics [1, 2], catalysis [3–6], energy storage
[7, 8], pharmaceutics andmedical sciences [9–13]. Nowadays, researchers particularly focuses on
multifunctional or hybrid nanomaterials those are havingmultiple areas of application.However, these
multifunctionalmaterials are eithermulti-crystalline or form a composite [7, 8]. Thus, a considerable amount of
interest has been given nowadays for fabricating such nanocomposite or doped nanomaterial [14–16].

In spite of that, biocompatibility andbioavailability aremajor issues that determines the potential areas of
applicationwhich is themain reason for the replacement of hazardousnanoparticleswith biocompatible ones [17].
In recent times, some studies show that the researchers are focussing onbiocompatible nano-systems to fabricate
efficient and cost-effective organic solar cells [18], heavymetal sensors [19–21], gas sensors [22] and energy
harvesting devices such asnanogenerators [23] and supercapacitors [24–26]. These next-generationnano-systems
andnano-devices are capable to reduce environmental pollution anddelivers greater efficiency [27, 28].

Boehmite (γ-AlOOH) is a typical oxy-hydroxide compound of aluminumwith a layered orthorhombic
structure [29, 30]. Previously, extensive research has been done on different synthesis pathways of this
nanomaterial [31, 32]. Some research is based on different properties such as optical [33], electrical [34],
mechanical properties [35] of boehmite those are showing itsmulti-dimensional usability. Biocompatibility is
anothermajor advantage of selecting boehmite for any application [36]. Boehmitewas reported as a promising
dental and orthopedicmaterial due to its biocompatibility and bioavailability [37, 38]. Nonetheless, a very
limited amount of interest has been paid on hybrid or doped boehmite nanostructure.
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In this study, we have developed a transitionmetal (Cu(II)) and another rare earthmetal (Gd(III)) derived
boehmite nano-systems that are capable of producing remarkably high electrical permittivity and greater
temperature stability (in case of the copper doped sample). The foreignmetal ions are doped into the
orthorhombic structure of boehmitematrix in a very small quantity (1%weight) and characterized by using
x-rayDiffraction (XRD), FT-IR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron
Microscopy) andBrunauer–Emmett–Teller (BET). A detailed crystallographic analysis of the samples was done
by refining the XRDpatterns of the samples by using a Rietveld based software packageMAUDand analyzed
herein. Comprehensive dielectric and ac conductivity studies have been performed and analyzed to ascertain the
alteration of electrical quality of the samples as a function of crystallographic deformation created by foreign
metal ionmediated doping. Increasing temperature stability, extensively high dielectric value with a very low
tangent lossmakes these doped boehmite samples potential candidates for energy harvesting applications.

2. Experimental section

2.1.Materials
Aluminumnitrate nonahydrate [Al(NO3)3·9H2O], aqueous ammonia solution (25%), copper acetate, acetone
(HPLC grade) and ethanol (HPLCgrade)were purchased fromMerck, Indiawhile gadoliniumoxidewas
purchased fromSRL, India. All the reagents usedwere of analytical grade andwere usedwithout any further
purification.Milliporewater with a resistivity of at least 18.2MΩ.cmwas used throughout our experiments.

2.2. Synthesis
Nanostructures of doped and undoped boehmite samples were synthesized by a facile two step hydrothermal
process. Undoped boehmite nanoparticles (NBH)were obtained by dissolving aluminumnitrate in 70 ml
Milliporewater usingmagnetic stirrer at room temperature followed by the drop-wise addition of ammonia
solution until the pH reached at 10. In case of copper-doped boehmite (CBH) and gadolinium-doped boehmite
(GBH), copper acetate and gadoliniumoxidewere added respectively into the solutions,maintaining theweight
ratios of Cu andGd to be 1%, followed by pH adjustment at 10 using ammonia solution. After proper
dissolution through vigorous stirring for 3 h, the solutions were transferred into separate Teflon lined stainless
steel autoclaves whichwere then placed in a dust free hot air oven at180 °C for 18 h.

The solid precipitates were collected from the bottomof eachTeflon jacket, washed several timeswith
Milliporewater, dried in vacuum at room temperature, then ground using amortar,marked and sent for further
characterizations.

3. Results and discussion

3.1. Structural andmicrostructural analysis
X-RayDiffraction (XRD) is an efficient and significant characterization tool for thedeterminationof crystal size,
structure,microstructure alongwithdetection andquantificationof phase purity [39]. Todetermine the crystallinity
of our samples, an x-raypowderDiffractometer (XRD) (D8,BrukerAXS,Winconsin,USA)was employedusingCu-
Kα target at thewavelengthof 1.5418 Åandoperated at 35 kV, 35mAwith a scan speedof 2 s/step and2θ range from
15°–60°. Structural andmicrostructural parameterswere studied through the refinement of the obtained samples
usingRietveldbasedMAUDprogram (version: 2.8), and the refined structureswere theoretically constructedusing
theVESTAprogram (version: 3.4.3). Figure 1depicts theXRDpatterns of the synthesized samples superimposed
with correspondingmiller indices,which are found tobe in goodagreementwith the JointCommittee onPowder
Diffraction Standards (JCPDS) cardno.21–1307.Absence of any extraundesirable peak confirms their purity and
ascertain that bothGd3+ andCu2+ ions in the case ofGBHandCBHrespectively donot alter the orthorhombic
structure of boehmite evenup to 1%doping and are successfully incorporated into the structure.

Rietveld refinementwas performed for theundoped (NBH) anddoped (CBHandGBH) samples to analyze
theirmicrostructural and structural characteristics [40]. There is a subsequent increase inmicrostrain on the
additionof foreignGd3+ andCu2+ ions,whichmight be due to the substitutionof smallerAl3+ ions (0.53 Å)by
largerGd3+ ions (0.94 Å)orCu2+ ions (0.71 Å) into the orthorhombicunit cells [41]. Besides that, entry of larger
cation inside the lattice structure causes internal homogeneous lattice stresswhich is evident from the slight shifting
of diffractionmaxima towards thehigher diffraction angle in the case ofCBHandGBH [42]. Thus thedopants have
created structural defects that can alter various physicochemical properties of boehmite. All structural and
microstructural data obtained from the refinement for all the three samples are illustrated in table 1.

Detailed analysis of structural and bond properties was done by usingVesta v3.4.3 (Visualization for
Electronic and Structural Analysis) software and have been depicted infigure 1. Incorporation ofGd3+ and
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Cu2+ ion does not alter the structural symmetry but the stress created from substitution by larger ions (Gd3+and
Cu2+) changes the bond angle (table 3) and bond lengths (table 2) slightly in case of GBHandCBH.

In order to ensure successful incorporationofGd3+ andCu2+ into the orthorhombic structure of boehmite,
FT-IR spectroscopywas performed (figure 2) in a ShimadzuFTIR-8400S spectrometer in thewavenumber range
from400 cm−1 to 4000 cm−1 and80 individual scanswere taken andmerged together to obtain thefinal spectra for

Figure 1.XRDpatterns and correspondingmicrostructural diagrams of the samples (a)NBH, (b)GBHand (c)CBH.

Table 1. Structural andmicrostructural parameters of the samples obtained fromRietveld refinement of XRDdiffractograms.

Parameters NBH GBH CBH

a (Å) 3.69205±7.694×10−4 3.6949866±0.0013171516 3.688224±8.923×10−4

b (Å) 12.210675±0.0033434944 12.242514±0.0064571705 12.226487±0.004935658
c (Å) 2.8641748±5.9727×10−4 2.8604217±0.0010346824 2.8592756±7.333×10-4

nanocrystallite size (nm) 12.583597±1.2386371 7.7872505±0.72373766 11.0133644±1.0858079
strain 1.3950×10−9 1.7313×10−5 4.6784×10−6

χ2 1.6206 1.7689 1.6984

Rp (%) 0.16076866 0.094971605 0.12739837

Rwp (%) 0.20466273 0.12631688 0.16602717
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each sample. 2mgof each samplewas homogenizedwith 100mgKBr (at 1:50 ratio) and themixtureswere pressed
for 5min at 5 ton in a hydraulic handpress to forma10mmpelletwhichwas dried at 80 °C for 4 hbefore
measurement in order to remove excessmoisture. Figure 2 depicts the FTIR spectra of as-synthesized
nanostructures.

In the case of normal boehmite (NBH), the absorption peakswere located at 480, 758, and 634 cm−1, which
are the characteristic peaks of boehmite [43]. Small peaks located at 1069 and 1158 cm−1 respectively were due to
Al-O-H vibration [44]. Absorption bands located at 3095 and 3305 cm−1 are due to symmetric and asymmetric
O–Hvibrations respectively [45]. The absorption band at 1634 cm−1 is due tomoisture adsorbed on the surfaces
of the samples [46].Moreover, GBH andCBH samples show a similar type of absorption band patternwhich
signifies that incorporation of theGd3+ andCu2+neither alter any bond structure nor create any bonding
network inside the boehmite phase, which agrees with ourXRD results.

Detailedmorphological featureswere analyzedbyusing a JEOLJEM-2000 transmissionelectronmicroscope
(TEM)with anoperatingvoltageof 200 kV.Aminute amountof samplewaswell-dispersed inacetone, sonicated till the
homogenous solutionwas formed, and thendrop-castedoncarbon-coated copper grids of 300mesh formicroscopy.

Doping-dependant alteration inmorphological features of the three samples was investigated using TEM
analysis which confirmed that there is a change in particlemorphology resulting from subsequent addition of
Gd3+ andCu2+ ions in the structure (figure 3). In the case of the undoped sample (NBH), the particles appeared
to be hexagonal with a sponge-like porous structure. Copper doped boehmite (CBH) sample shows highly
porous rhomboidalmorphologywith amean pore diameter of 2–4 nm. Rare earth gadoliniumdopedGBH
particles appeared to be rod-like. Previously, we havementioned in our article [38] that increasingmicrostrain
changes the particlemorphology significantly by virtue of crystal defects which contribute toward this
morphological evolution [41]. Here, in the case of CBH, the ionic radius of copper ions is quite smaller than that
of gadolinium ions. Thus, themicrostrain created inside the orthorhombic structure of the hostmaterial in the
case of CBH is also lower than that of GBH.Henceforth, themorphology has drastically been changed into rod-
shaped, whereas, CBH sample has been completely transformed into rhomboidal particles.Moreover, the
incorporation of foreign cations inside the pure boehmitematrix have been examined and justified by using
EnergyDispersive x-ray spectroscopy (EDX) (figure 4). The traces of Gd andCu inside the orthorhombic phase

Table 2.Variation of the bond lengths of pure and doped
boehmite samples.

Nature of the bond NBH (Å) GBH(Å) CBH(Å)

Al–O (O1) 1.87386 1.87285 1.86532

Al–OH (O2) 1.83549 1.78957 1.83252

Figure 2. FTIR spectra of the samples (a)NBH, (b)GBHand (c)CBH.

Table 3.Variation of the bond angles of pure and doped boehmite samples.

Angle between NBH (degree) GBH(degree) CBH(degree)

OH–Al–O 85.5992 95.6575 95.3984

OH–Al–OH 102.5614 106.1062 102.5486

O–Al–O 86.2401 161.1207 162.7013
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of boehmite can be observed in EDXdatawhich corroborates that the foreign impurities have been properly
incorporated in the boehmite samples.

3.2. Surface area and porosity analysis
The pore size distribution and surface area of the as-synthesized nanostructures have been analyzed through
Brunauer–Emmett–Teller (BET) andBarrer-Joyner-Halenda (BJH)methods by usingN2 gas adsorption-
desorption values by employing a Twin Surface Area Analyzer fromQuanta-chrome Instruments (USA).

Surface areas of the synthesized nanostructures corresponding to the nitrogen (N2) adsorption-desorption
isotherms and their corresponding pore size distributions are illustrated infigure 5. The type-IV isotherm
(figure 6) obtained from the data indicates that the undoped (NBH) sample ismesoporous, having a pore
diameter of 3.53 nm in our samples [47, 48]. H4-type hysteresis loops were obtained for all the samples,

Figure 3.TEMmicrographs of as-synthesized (a)NBH, (b)GBHand (c)CBH.

Figure 4.EDX spectra of (a)GBHand (b)CBHsamples those are showing the traces of Gd andCu respectively in the boehmite (γ-
AlOOH)matrix.

Figure 5.N2 adsorption/desorption isotherm of (a)NBH, (b)GBHand (c)CBH.
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indicating the formation of slit-like pores [47, 48]. From the BETdata, it is quite evident that the surface areas of
the doped boehmite samples enhanced quite significantly. The surface area forNBHwas found to be
4.473 m2 g−1 while the surface area of CBHandGBHwas found to be 5.282 m2 g−1 and 6.406 m2 g−1

respectively (table 4). This surface area enhancement could be beneficial for producing high dielectricmaterials.

3.3.Dielectric permittivity analysis
Electrical properties (dielectric constant and electrical conductionmechanism)were determined by using an
Agilent 4294 APrecision Impedance Analyzer operating at 0.5 V bias voltages set at a frequency range from
40 Hz to 10MHz. Solid pellets of the samples were prepared to compact them in theHydraulic press system at 5
tons for 5 min, using smallmetallic sample holders and the sent for electrical characterizations.

Dielectric properties of amaterial can be described using the relation [49],

( )e e e= ¢ + j 1

where, ε′ and ε′′ are the real and imaginary part of the relative dielectric constant respectively, and ε′ contributes
to the quantity of energy stored in thematerial due to polarization effect and often referred as dielectric constant,
whereas the imaginary part (ε′′) is related to the energy dissipated by thematerial. The real part of the dielectric
constant can be calculated using the relation:

( )e
e

¢ =
C d.

A
2

0

where, C is the capacitance of the sample, d andA are thickness and surface area of the sample respectively and ε0
is the permittivity of free space (8.85×10−12 F m−1). Doping dependent variation of the real part of the
dielectric constant (ε′)with applied field frequency (ranging from40 Hz to 10MHz) at different temperatures
ranging from30 °C to 150 °Chas been shown infigures 7(a)–(c).

Figure 6.Pore size distribution data of (a) undopedNBH, (b)Gd-dopedGBHand (c)Cu-dopedCBH.

Table 4.Estimated BET surface area, pore radius and pore volume of pure
and doped boehmite nanostructures.

Sample

name Surface area (m2/g)

Pore

size

(nm)
Pore volume

(cc./g)

NBH 4.473 3.530 4.292×10−2

GBH 6.406 3.113 9.532×10−2

CBH 5.282 3.113 4.514×10−2
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In all three samples, therewas a drastic reduction of dielectric constant value with increasing frequency. The
values of the dielectric constant at lower frequency were considerably higher due to theMaxwell-Wagner
interfacial polarization effect [50, 51], which is in good agreementwithKoop’s theory [52]. As per this theory,
the conducting grains of the dielectricmedium are separated by poorly conducting grain boundaries which are
formed due to imperfection in crystal alignment. Doping of larger sized ions like Gd3+ andCu2+ causes crystal
defects, as evident fromourXRD results. These defects generate space charge distributions at the interfaces.
Space charge comes under the influence of the externalfield and trapped at interfacial defects centers on grain
boundary during theirmovement and converted into dielectric species that result in high dielectric constant in
our doped samples [53, 54].

On the other hand, incorporation of larger sizedGd-ions into the boehmitematrix causes higher stress,
resulting in nearly rod-shapedmorphology that enhances the surface to volume ratio and results in the highest
value for dielectric constant (1.973×106) at room temperature and 40 Hz frequency. A lower amount of

Figure 7.Variation of dielectric constant with frequency (a)–(c), tangent loss (d)–(f) and temperature dependent dielectric response
(g)–(i) for the samplesNBH,GBHandCBH respectively.

Figure 8.Temperaturemediatedmass losses (TGA) and differential thermal analyses (DTA) (inset) of the samples.
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microstrain developed due to the incorporation of copper ionswhich further creates rhomboidal particles with a
surface area of 5.282 m2 g−1 and causes a dielectric constant of 4.07×105, while forNBH, it was found to be
lowest (1.37×105).

In reality, the enhanced surface to volume ratio can accommodate a higher number of electric dipoles
dielectric species that further can enhance the permittivity value aswe havementioned herein.Henceforth, the
dielectric constant of our doped samples enhanced not only due to the crystal defects but also due to the higher
surface to volume ratios.

Tangent losses of our synthesized nanostructures are in good agreementwith high dielectric values. In every
case, the peaks of the loss tangent shift toward the lower frequency sides with increasing temperatures
(figures 7(d)–(f)). This is because, at higher temperatures γ-AlOOH (boehmite) turns into another unstable
phase (γ*-AlOOH) that hasmore oxygen vacancies [55]. These vacancy defects contribute to higher values of the
tangent loss in the low-frequency regions and at high temperatures.

Figure 9.Variation of ac electrical conductivity with frequency for different temperatures of the samples (a)NBH, (b)GBH, (c)CBH.
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The permittivity graphs plotted against varying temperatures have been depicted infigures 7(g)–(i)which
illustrates that the dielectric value is quite high forNBHandGBHup to 70°–80 °C temperatures and then slowly
decreases. Thermo-gravimetric analysis (TGA) andDifferential Thermal Analysis (DTA) have been performed
to investigate this phenomenon (figure 8). Very small amount of samples have been placed into platinum
crucibles and the TGA-DTAwere performed in presence ofN2 gas as themedium. ADTG-60H, Shimadzuwas
employed for this purpose with a constant heating rate of 10 °Cmin−1.

TGA-DTAdata shows that themass loss in case ofNBH is around 4.796%with an endothermic peak
centered at 66.67 °C,whereas, it is 11.157% and 7.453%with peaks centered at 79.92 and 67.17 °C forGBHand
CBH respectively. As par our dielectric data suggest, the electrical permittivity also decreases slowly in this
particular region due to the release of adsorbedmoisture from the surface of the samples. Nonetheless, lowmass
losses indicate that our samples are quite stable up to 150 °C and applicable for capacitive applications and
incorporation of foreign cations increases the thermal stability of our doped samples.

3.4. Electrical conductionmechanism
The electrical conductivity of the three nanostructures is investigated to explore the conductionmechanism.
Fromfigure 9 it is quite evident that the lower frequency region (<10 kHz) contributes low values of ac
conductivity for all the samples as the grain boundary restricts the hopping of the free charge carriers [56].
Beyond the 10 kHzfield frequency, the samples exhibit high values of ac conductivities. In the high-frequency
domain, charge carriers get their activation energies (Ea) to overcome the potential barrier and results in higher
values of electrical conductivities. The activation energies of the entire sample set have been calculated by using
the Arrhenius equation as follows [57],

( )s s=
-

e 3
E

K T0

a

B

where Ea is the activation energy,σ0 be the pre-exponential factor, KB is Boltzmann constant andT is the
absolute temperature. Arrhenius plots were estimated from the ac conductivity data calculated atfield
frequencies 100 Hz, 10 kHz, 100 kHz and 1MHz (figure 10). A detailed depiction of activation energies is given
in table 5.

Figure 10.Arrhenius plots for the samples (a)NBH, (b)GBHand (c)CBHat different frequency domain.

Table 5.Calculated Activation energies (Ea)
fromArrhenius plots.

Sample name Frequency Ea(eV)

NBH 100 hz 0.5135

10 kHz 0.7301

100 kHz 0.9028

1 MHz 0.9728

GBH 100 hz 0.2658

10 KHz 0.6803

100 KHz 0.7248

1 MHz 0.784

CBH 100 Hz 0.0428

10 KHz 0.0976

100 KHz 0.4001

1 MHz 0.5281
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Among the three samples, GBH shows the highest conductivity values at higher frequency region andNBH
has the lowest value of ac conductivity among these three samples. In reality, doped samples (GBHandCBH)
have a higher surface area and a higher number of free charge carriers whichmakes them easier to perform
hopping fromone grain to another under the external electricfield frequency. Henceforth, doped boehmite
samples, especially GBHhave the potential to produce good conduction among the three.

4. Conclusion

Herewe synthesized transitionmetal (Cu(II)) and rare earthmetal (Gd(III)) decorated boehmite nanostructures
and analyzed their structural,microstructural and electrical properties based on crystallographic deformation.
This is thefirst timewhen the dielectric and conductivity properties of these doped samples alongwith pure
boehmite nanostructure have been performed and compared. Rietveld refinement enables us to perform
microstructural analyses thatmake a crucial impact to study the dielectric and ac conductivity of these
nanostructures. Increasingmicrostrain not only generates crystal defects but also enhances the electrical
properties significantly bymodulating surface area andmorphology. Temperature-dependent variation of
electrical parameters of these nanostructures shows that particularly doped samples are electrically stable which
was further investigated by using TGA-DTA. Among these three nanostructures, GBH shows a promising value
of dielectric constant (1.97×106 at 40 Hz frequency in room temperature)with a very low tangent loss whereas,
copper dopedCBHhas a high dielectric permittivity with remarkably high-temperature stability. Due to their
colossal permittivity, high-temperature stability and negligible tangent loss, these doped boehmite samples
could be used as potentialmaterials in energy harvesting devices.
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Synopsis

Thiswork demonstrates how incorporation of infinitesimally small amounts of transitionmetal Cu(II) and rare
earthmetal Gd(III) alters the crystallographic properties of doped boehmite samples and results in the
enhancements of temperature stability and electrical properties of the doped boehmite samples.
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