39 research outputs found

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur

    Screening of MAMLD1 Mutations in 70 Children with 46,XY DSD: Identification and Functional Analysis of Two New Mutations

    Get PDF
    More than 50% of children with severe 46,XY disorders of sex development (DSD) do not have a definitive etiological diagnosis. Besides gonadal dysgenesis, defects in androgen biosynthesis, and abnormalities in androgen sensitivity, the Mastermind-like domain containing 1 (MAMLD1) gene, which was identified as critical for the development of male genitalia, may be implicated. The present study investigated whether MAMLD1 is implicated in cases of severe 46,XY DSD and whether routine sequencing of MAMLD1 should be performed in these patients

    Disorders of sex development: effect of molecular diagnostics

    Get PDF
    Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs

    Bone marrow changes related to disuse

    No full text
    OBJECTIVE: To evaluate bone marrow changes on knee MRI in patients with 3-to-6 week long period of unloading. MATERIALS AND METHODS: MRI knee examinations were performed in 30 patients (14 men, 16 women, aged 20–53 years) at baseline and 5–10 weeks after immobilization of the ipsilateral lower extremity; subsets of patients were examined at additional time points. Ten volunteers (4 men, 6 women; aged 20–50) were studied as control cohort at 2 time points. Bone marrow signal abnormalities were analyzed according to 1) severity, 2) signal alteration relative to hyaline cartilage, 3) morphology, 4) increased vascularity in the knee joint and 5) T1-signal alteration. Spearman rank correlation test (SRC) and Kendall’s tau (KT) were used to compare individual scores. RESULTS: All 30 patients presented abnormal bone marrow findings after unloading, which reached a peak at 10–25 weeks (P <0.001). These findings decreased within one year (P <0.001). High scores of severity were associated with confluent and patchy patterns of bone marrow (SCR=0.923, P <0.01 and KT= 0.877 P <0.01). CONCLUSION: Signal abnormalities of the bone marrow related to unloading are consistent findings and most prominent 10–25 weeks following immobilization when both confluent and patchy hyperintense patterns are present

    A culture system for the live analysis of successive developmental processes and the morphological control of mammalian vertebral cartilage

    No full text
    The mesoderm-derived segmental somite differentiates into dermomyotome and sclerotome, the latter of which undergoes vertebrogenesis to spinal cartilage and ultimately to vertebral bones. However, analysis and manipulation of the developing mammalian vertebrae in the same embryo has been infeasible because of their placental-dependent embryogenesis. Here, we report a novel culture system of the mouse embryonic tailbud, by which the developmental processes of mammalian vertebral cartilage are traceable and manipulatable in the same sample. The anaplastic segmental somites/sclerotomes in the tailbud of 13 gestational day (g.d.) embryo that are structurally continuous to the vertebral column underwent progressive vertebrogenesis when (1) the ectoderm-derived nascent epidermis was microsurgically removed prior to cultivation, and (2) the sample was incubated at the air-medium interface. After cultivation for 5 days, the size and shape of the instructed vertebral cartilage showed features comparable to well-differentiated body vertebra along with the expression of the cartilage marker collagen type II, suggesting that aggressive differentiation of the sclerotomal cell lineage was achieved. In the presence of recombinant bone morphogenic protein (BMP) and Noggin, or adenoviral particles for extracellular epimorphin, dramatic alteration of the vertebral morphology ensued in the explants. Thus, this model system provides an approach to study the detailed molecular mechanisms of mammalian vertebrogenesis and enables pretreatment strategies of precartilagious fragments for improving the efficacy of subsequent transplantation
    corecore