4 research outputs found

    Spatiotemporal Behaviour of AF Drivers in Patients with Persistent Atrial Fibrillation Using Non-Contacting Intracardiac Atrial Electrograms

    Full text link
    Atrial fibrillation (AF) is the most common cardiac arrhythmia and a major cause of hospitalisation and morbidity, impacting over 40 million people worldwide. Moreover, it increases the risk of stroke up to five-fold. Catheter ablation is recognised as an excellent percutaneous therapy used for drug-refractory AF with persistent AF (PersAF). Nevertheless, the success of ablation therapy for AF is between 40-70% due to the interaction between relevant atrial substrate and the initiation and maintenance of AF. Various methods are being developed in relation to employing intracardiac AF electrograms to identify critical substrate sites for catheter ablation. These approaches comprise dominant frequency mapping, phase mapping, spatiotemporal dispersion assessment, and so forth. Up until now, these approaches have attained completely different success rates. Therefore, this thesis aimed to analyse the spatiotemporal behaviour of AF drivers using phase mapping and dominant frequency mapping for identifying potential substrate targets during AF ablation for PersAF patients. Phase mapping is useful for analysing the spatiotemporal characteristics of intracardiac AF electrograms. Therefore, the current work investigates the minimal acceptable recording duration for summarising the spatiotemporal behaviour of long lifespan of persistent phase singularity points (PSs), also known as ‘rotors’, during PersAF in humans. PersAF is believed to be maintained by means of localised sources, ‘drivers’, high-dominant frequency (HDF), rotors, etc. Yet, identifying these putative AF drivers in PersAF patients is a considerable challenge on account of the spatiotemporal instability of such sources. Accordingly, in this current work, we investigate the spatiotemporal stability of potential AF drivers within long-duration recordings of Virtual Intracardiac Electrograms (VEGMs) during PersAF in humans. The pathogenesis of AF involves interactions occurring at cellular, tissue and organ levels and PersAF is not a single entity, but rather it is a moving and active target. The correlation between HDF and rotors has been evaluated in intracardiac contact recordings. Nonetheless, the association between frequency and phase on non-contact mapping (NCM) has not been completely characterised. Hence, it is essential to consider the spatial interactions between AF drivers. Therefore, this thesis studied the spatial disparities of rotor sites and HDF regions during catheter ablation for PersAF.</p

    A portable electrocardiogram for real-time monitoring of cardiac signals

    No full text
    This study presents an electrocardiogram (ECG) monitoring and processing system which can observe subjects in real time and display the resultant ECG signals on a computer for observation. The primary application is for the remote observation of cardiac patients. This paper aims to determine its reliability by analysing its portability and wireless connectivity. The system is comprised of three principal units, namely the data acquisition circuit, where cardiac electrical signals are detected using three surface electrodes placed at three different positions on the chest wall to follow the Einthoven Triangle. The signals measured are amplified and filtered by components in a circuit and are then carried to a data processing unit where a ATmega328P microcontroller with a ZigBee interface module are used to transfer the biosignal wirelessly to the Graphical User Interface (GUI) unit which has the capacity to observe ECG biosignals on a computer. The results demonstrated that the design successfully produced a distortion-free signal, namely the hardware and software elements operated and intercommunicated correctly. In both LabVIEW and MATLAB configurations, the GUI characteristics were examined and found to yield unproblematic, user-friendly displays in real-time. Thus, this research provides a novel ECG system design to effectively analyse cardiac patients, however, it would be useful to develop a tool that can differentiate the various forms of cardiac arrhythmia.</p

    Evaluating spatial disparities of rotor sites and high dominant frequency regions during catheter ablation for PersAF patients targeting high dominant frequency sites using non-contacting mapping

    No full text
    Purpose: Several studies have emphasised the significance of high dominant frequency (HDF) and rotors in the perpetuation of AF. However, the co-localisation relationship between both attributes is not completely understood yet. In this study, we aim to evaluate the spatial distributions of HDF regions and rotor sites within the left atrium (LA) pre and post HDF-guided ablation in PersAF.Methods: This study involved 10 PersAF patients undergoing catheter ablation targeting HDF regions in the LA. 2048-channels of atrial electrograms (AEG) were collected pre- and post-ablation using a non-contact array (EnSite, Abbott). The dominant frequency (DF, 4–10 Hz) areas with DF within 0.25 Hz of the maximum out of the 2048 points were defined as “high” DF (HDF). Rotors were defined as PSs that last more than 100 ms and at a similar location through subsequent phase frames over time.Results: The results indicated an extremely poor spatial correlation between the HDF regions and sites of the rotors in pre-versus post-ablation cases for the non-terminated (pre: CORR; 0.05 ± 0.17. vs. post: CORR; −0.030 ± 0.19, and with terminated patients (pre: CORR; −0.016 ± 0.03. post: CORR; −0.022 ± 0.04). Rotors associated with AF terminations had a long-lasting life-span post-ablation (non-terminated vs. terminated 120.7 ± 6.5 ms vs. 139.9 ± 39.8 ms), high core velocity (1.35 ± 1.3 mm/ms vs. 1.32 ± 0.9 mm/ms), and were less meandering (3.4 ± 3.04 mm vs. 1.5 ± 1.2 mm). Although the results suggest a poor spatial overlapping between rotors’ sites and sites of AFCL changes in terminated and non-terminated patients, a higher correlation was determined in terminated patients (spatial overlapping percentage pre: 25 ± 4.2% vs. 17 ± 3.8% vs. post: 8 ± 4.2% vs. 3.7 ± 1.7% p < 0.05, respectively).Conclusion: Using non-contact AEG, it was noted that the correlation is poor between the spatial distribution of HDF regions and sites of rotors. Rotors were longer-lasting, faster and more stationary in patients with AF termination post-ablation. Rotors sites demonstrated poor spatial overlapping with sites of AFCL changes that lead to AF termination

    Could regional electrogram desynchronization identified using mean phase coherence be potential ablation targets in persistent atrial fibrillation?

    Full text link
    BackgroundIt remains controversial as to whether rotors detected using phase mapping during persistent atrial fibrillation (persAF) represent main drivers of the underlying mechanism as others found rotors to be located near line of conduction block. Regional electrogram desynchronization (RED) has been suggested as successful targets for persAF ablation, but automatic tools and quantitative measures are lacking.PurposeWe aim to use mean phase coherence (MPC) to automatically identify RED regions during persAF. This method was compared with phase singularity density (PSD) maps.MethodsPatients undergoing left atrial (LA) persAF ablation were enrolled (n = 10). 2048-channel virtual electrograms (VEGMs) were collected from each patient using non-contact mapping (St Jude Velocity System, Ensite Array) for 10 seconds. To remove far field ventricular activities, QRS onset and T wave end locations were detected from ECG lead I (Figure 1A) and only the VEGM segments from T end to QRS onset were included in the analysis. VEGMs were reconstructed using sinusoidal wavelets fitting and the phase of VEGMs determined using Hilbert transform. Phase singularities (PS) were detected using the topological charge method and repetitive PSD maps were generated. RED was defined as the average of MPC of each node against direct neighbouring nodes on the 3D mesh (Figure 1A-B). Linear regression analysis was used to compare the average MPC vs. PSD and vs. the standard deviation of MPC (MPC_SD).ResultsA total of 221,184 VEGM segments were analysed with mean duration of 364.2 milliseconds. MPC has shown the ability to quantify the level of synchronisation between VEGMs (Figure 1B). Inverse correlation was found between PSD and average MPC values for all 10 patients (p ConclusionWe have proposed a method to quantify the level of synchronisation between VEGMs. Phase density mapping showed a considerable agreement with RED regions reflecting regional conducting delays, which supports the previous finding where rotors found at conduction block. Inverse correlation between local average MPC and MPC_SD suggests that conduction delays of the identified regions are not heterogenous, posing directional preferences. Rather than solely looking for rotational activities, this method could identify comprehensive RED regions, which may also explain the conflicting results from different studies targeting rotational activities, where incomplete subsets of RED regions could have been targeted. Atrial RED regions can easily be identified with simultaneously collected electrograms from multi-polar catheters and should be targeted in future persAF studies.</div
    corecore