51 research outputs found

    Identifying and Evaluating the Relationships that Control a Land Surface Model's Hydrological Behavior

    Get PDF
    The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs

    Contribution of Soil Moisture Information to Streamflow Prediction in the Snowmelt Season: A Continental-Scale Analysis

    Get PDF
    In areas dominated by winter snowcover, the prediction of streamflow during the snowmelt season may benefit from three pieces of information: (i) the accurate prediction of weather variability (precipitation, etc.) leading up to and during the snowmelt season, (ii) estimates of the amount of snow present during the winter season, and (iii) estimates of the amount of soil moisture underlying the snowpack during the winter season. The importance of accurate meteorological predictions and wintertime snow estimates is obvious. The contribution of soil moisture to streamflow prediction is more subtle yet potentially very important. If the soil is dry below the snowpack, a significant fraction of the snowmelt may be lost to streamflow and potential reservoir storage, since it may infiltrate the soil instead for later evaporation. Such evaporative losses are presumably smaller if the soil below the snowpack is wet. In this paper, we use a state-of-the-art land surface model to quantify the contribution of wintertime snow and soil moisture information -- both together and separately -- to skill in forecasting springtime streamflow. We find that soil moisture information indeed contributes significantly to streamflow prediction skill

    AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and Land-Atmosphere Feedback

    Get PDF
    Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). We first forced the LSM globally with a 15-year observations-based dataset. We then repeated the simulation after imposing a representative set of GCM climate biases onto the forcings - the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM over the same period-The AGCM s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory timescales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America - parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill

    The Second Phase of the Global Land Atmosphere Coupling Experiment (GLACE-2): Impact of Land Initialization on Subseasonal Forecasts

    Get PDF
    The recently-completed second phase of the Global Land-Atmosphere Coupling Experiment (GLACE-2) focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the multi-institutional numerical experiment is described, along with a determination and characterization of multi-model "consensus" skill. The models show modest but significant land-derived skill in predicting air temperatures out to two months, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forecast skill is much weaker than that for air temperature. The skill for predicting air temperature, and to some extent precipitation, increases with the magnitude of the initial soil moisture anomaly. GLACE-2 results are examined further to provide insight into the asymmetric impacts of wet and dry soil moisture initialization on skill

    Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    Get PDF
    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle

    A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture

    Get PDF
    NASAs Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence

    Prediction of Hydrological Drought: What Can We Learn From Continental-Scale Offline Simulations?

    Get PDF
    Land surface model experiments are used to quantify, across the coterminous United States, the contributions (isolated and combined) of soil moisture and snowpack initialization to the skill of seasonal streamflow forecasts at multiple leads and for different start dates. Forecasted streamflows are compared to naturalized streamflow observations where available and to synthetic (model-generated) streamflow data elsewhere. We find that snow initialization has a major impact on skill in the mountainous western U.S. and in a portion of the northern Great Plains; a mid-winter (January 1) initialization of snow in these areas leads to significant skill in the spring melting season. Soil moisture initialization also contributes to skill, and although the maximum contributions are not as large as those seen for snow initialization, the soil moisture contributions extend across a much broader geographical area. Soil moisture initialization can contribute to skill at long leads (up to 5 or 6 months), particularly for forecasts issued during winter

    Land-Focused Changes in the Updated GEOS FP System (Version 5.25)

    Get PDF
    Many of the changes imposed in the January 2020 upgrade from Version 5.22 to 5.25 of the Goddard Earth Observing System (GEOS) Forward Processing (FP) analysis system were designed to increase the realism of simulated land variables. The changes, which consist of both land model parameter updates and improvements to the physical treatments employed for various land processes, have generally positive or neutral impacts on the character of the FP product, as documented here

    Soil Moisture as a Harbinger of Increased Forecast Reliability at Subseasonal Time Scales

    Get PDF
    The shape of the nonlinear relationship between evapotranspiration and soil moisture (the "ET-W relationship") helps control the evolution of soil moisture with time. Together, the shape of the relationship and the magnitude of the soil moisture anomaly at the beginning of a subseasonal forecast help determine whether a given anomaly will still be present at subseasonal leads, allowing it to contribute to skill in subseasonal temperature and precipitation prediction at those leads. In this study we examine subseasonal prediction in the context of soil moisture initialization using a suite of forecasts performed with the NASA GEOS seasonal forecast system. Large soil moisture anomalies are in fact found to be harbingers of increased skill in the subseasonal forecasts. Furthermore, accounting explicitly for the nonlinear shape of the ET-W relationship improves our ability to quantity the increase in forecast reliability associated with soil moisture initialization

    Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting

    Get PDF
    Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction
    • …
    corecore