@ https:/intrs.nasa.gov/search.jsp?R=20140011277 2019-08-31T719:40:30+00:00Z

Soil Moisture Initialization Error and Subgrid Variability of Precipitation
in Seasonal Streamflow Forecasting

Randal D. Koster, Gregory K. Walker, Sarith P. P. Mahanama, and Rolf H. Reichle

Abstract

Offline simulations over the conterminous United States (CONUS) with a land surface model are
used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to
which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a
realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts.
The addition of error to a soil moisture initialization field is found to lead to a nearly proportional
reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower
bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation,
e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is
found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant
relative to the precipitation variance. This condition is met only in the western half of the CONUS
domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface

modeling system as a tool for addressing the science of hydrological prediction.

1. Introduction

Due to the importance of accurate streamflow forecasts for water resources planning (e.g., Yao
and Georgakakos 2001; Hamlet et al. 2002), the development of approaches for producing useful
streamflow forecasts and the evaluation of these approaches over time has a rich history, going back to at
least the 1930s (Pagano et al. 2004). Operational streamflow forecasts generally rely on statistical

techniques (e.g., Garen 1992). Using various quantities describing the current state of a system (e.g.,



snow amount, soil moisture, climate indices), calibrated regressions are applied that transform these
quantities into streamflow forecasts.

The historical use of these statistical techniques is arguably a reflection of historical limitations in
our ability to model accurately the physical processes that generate streamflow — in particular our ability
to provide the high resolution forcing and boundary condition data needed to support the physical
modeling. The advent of improved observational networks in recent decades, however, has supported the
growth of the physical modeling approach. A now common forecast strategy utilizes spatially distributed
land surface modeling: realistic snow and soil moisture fields are used to initialize the models, which are
then integrated into the forecast period with atmospheric forcing, producing streamflow forecasts along
the way (Day 1985). The atmospheric forcing can take the form of historical time series at the site in
question (e.g., Wang et al. 2011), sometimes modified depending on the needs of the study (e.g., Hamlet
and Lettenmaier, 1999); alternatively, it can be derived from the forcing produced by a full numerical
Earth system model running seasonal forecasts (e.g., Wood et al. 2002). The land surface models used
are generally distributed, physically-based representations of surface water and energy budget processes
that take advantage of the information content of a wide variety of observations. Wood and Lettenmaier
(2006) outline strong arguments for the expectation that the land modeling strategy will, in time, eclipse
the regression approach as the preferred means of providing streamflow forecasts.

Recent work has provided important insights into the science of predicting streamflow with the
land modeling strategy. For example, a number of studies used such systems to examine the relative
contributions of state initialization and forecasted meteorological forcing to streamflow forecast skill
(e.g., Wood and Lettenmaier 2008; Mahanama et al. 2008, 2012; Bierkens and van Beek 2009; Li et al.
2009). Luo and Wood (2008) demonstrated the effectiveness of a Bayesian approach for producing high
resolution land model forcing for streamflow forecasts, an approach that combines information from
multiple coarser resolution meteorological forecasts and historical data. Yuan and Wood (2013)

examined the skill levels achieved through bias correction in the atmospheric forcing prior to its



application in the offline (land-only) system versus those achieved with bias-corrected streamflow
products from the original seasonal forecast system.

As these examples demonstrate, a given offline modeling system can serve as a powerful testbed
for addressing the science underlying streamflow prediction. Given the potential societal benefits of
accurate streamflow predictions, and given that many aspects of the science underlying the predictions
still require clarification, the systems have considerable untapped value for basic research. In the present
paper, we tap into some of this unmet potential — we use a specific land modeling system to address two
distinct and relatively unexplored facets of the streamflow prediction problem.

In the first exercise, we address the impact of soil moisture initialization error on streamflow
forecast skill. Specifically, we add artificial, prescribed levels of error to the realistic soil moisture
initializations employed by Mahanama et al. (2012) in their forecast experiments and then quantify the
resulting degradation of the streamflow forecasts. The degradation is then interpreted in terms of the
increase in skill attainable from improvements in soil moisture initialization, improvements that are
expected from the utilization of data from current and upcoming satellite-based soil moisture missions
(namely, the Soil Moisture and Ocean Salinity (SMOS; Kerr et al. 2010) and Soil Moisture Active
Passive (SMAP; Entekhabi et al. 2010b) missions).

Our second exercise focuses on precipitation downscaling and its relationship to streamflow
forecasts. A number of studies have addressed the issue of downscaling, focusing on the statistical or
dynamical approaches used to achieve it (e.g., Luo et al. 2007; Yuan et al. 2012) and on the application of
the downscaled data to offline hydrologic systems (e.g., Luo and Wood 2008; see Schaake et al. (2012)
for a summary of some outstanding issues). Here, we focus on a specific aspect of downscaling, namely,
the increase in the spatial resolution of the precipitation data applied to the distributed offline forecast
system; we do not address here the additional step of correcting the higher resolution data for local biases
and other errors. Through careful joint analysis of coarse resolution (1°x1°) and higher resolution

(0.125°%0.125°) offline simulations, we examine an essentially unanswered question: under what climatic



conditions can increasing the spatial resolution of precipitation add value to forecasts of large-scale
streamflow totals? The potential for added value is indeed found to depend strongly on climate regime.
The two applications of the land modeling system are discussed in Sections 2 and 3, respectively,
and further discussion is provided in Section 4. Taken together, the two applications demonstrate the
usefulness of offline land modeling systems as powerful and highly efficient tools for addressing

important yet still unresolved issues in seasonal streamflow forecasting.

2. Impact of Soil Moisture Initialization Error on Streamflow Forecast Skill
a. Overview of basic forecast experiment

Our simulation experiments were performed with the Catchment land surface model (LSM)
(Koster et al. 2000; Ducharne et al. 2000), more specifically the version of the model described in Section
6 of Koster and Mahanama (2012). The Catchment LSM is a state-of-the-art model designed for use with
global atmospheric models, with detailed treatments of a full range of processes (stomatal conductance,
interception, baseflow, snow, etc.) serving to determine the fluxes that make up the surface water and
energy budgets. The model’s unique feature is its explicit treatment of the impacts of subgrid soil
moisture variability on the computed evaporation and runoff fluxes. The Catchment LSM has been tested
in a number of settings (e.g., Boone et al. 2004, Bowling et al. 2003; Reichle et al. 2011) and recently
served as the land model underlying the Modern-Era Retrospective Analysis for Research and
Applications (MERRA) reanalysis (Rienecker et al 2011, Reichle et al 2011).

The strategy employed in our simulation experiments can be described briefly as follows. In a
“reference” set of forecast simulations, the Catchment LSM generates offline forecasts of runoff after
being initialized with realistic soil moisture contents, and the skill of the forecasts is quantified through
comparison of seasonal runoff accumulations over basins (i.e., simulated streamflow) with corresponding
streamflow observations. The forecasts are then repeated with degraded soil moisture initial conditions
(with different levels of error imposed in different experiments), and the resulting loss of streamflow
forecast skill is quantified. We thereby quantify the sensitivity of forecast skill to soil moisture
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initialization accuracy, the idea being that this sensitivity has implications for forecast improvement
through the improved estimation of soil moisture.

Naturally, prior to performing any of the forecasts, realistic initialization states for the soil
moisture variables must be established. This is accomplished through a long-term (1920-2002)
simulation of the Catchment LSM across the conterminous United States (CONUS) at a 0.5° resolution
using observations-based atmospheric forcing (Andreadis et al. 2005). The offline simulation is
equivalent to that of the “CTRL” simulation described by Mahanama et al. (2012) except for the
aforementioned use of an updated version of the Catchment LSM.

The reference forecasts consist of 3-month model integrations starting on January 1, April 1, July
1, and October 1 of each year in the multi-decadal period (1920-2002). The soil moisture states on a
given date from the CTRL simulation serve as the initial conditions for the reference forecast with that
start date. We initialize snow and ground temperatures in the land model, however, to their
climatological states, as determined from the multi-decadal CTRL simulation. Similarly, the atmospheric
forcing used during the forecast period is the climatological seasonal cycle of forcing derived from the
forcing dataset of the CTRL simulation. As a result, the differences between, say, the July-September
streamflow forecasts for different years stem solely from the different July 1 soil moisture conditions used
— any skill obtained in the forecasts reflects the soil moisture initialization alone. While skill would
presumably increase if we included snow initialization and forecasted meteorological conditions in the
simulations, we are specifically interested here in soil moisture impacts on skill; this experimental design
allows us to isolate and analyze these impacts. Note that the reference forecasts are essentially equivalent
to the “Exp3” simulations of Mahanama et al. (2012), the only difference being that here we rely on the
newer version of the Catchment LSM alone rather than an on ensemble of four land surface models.

To quantify streamflow forecast skill, the grid-cell-based seasonal runoff values produced in the
forecast simulations are averaged over the 20 basins shown in Figure 1 to generate a time series of
seasonal streamflow estimates for each basin. These estimates are in turn compared to contemporaneous
observations of streamflow in these basins (see Mahanama et al. [2012] for details); the resulting
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correlation coefficient (rq.o»s) between the simulated and observed time series serves as our skill metric.
Note that the observed streamflows are naturalized, having been modified to remove the impacts of
reservoir operations on streamflow totals. The consideration of seasonal totals reduces any errors
associated with the neglect, in the model analysis, of the residence time of runoff water in the river

network upstream of the gauges.

b. Imposition of soil moisture error

The set of forecast simulations described above serves as the reference — the “unperturbed error”
case — for a series of experiments in which we impose specific levels of error in the initial soil moisture
fields prior to performing the forecasts. For these latter experiments, we first generate a series of spatially
correlated error fields, £, with the error for a given grid cell [i,j] and year ¢ selected from a unit normal
distribution. The imposed e-folding decorrelation length scale of the error is taken to be 2° in longitude
and latitude, which is consistent with the length scale for errors employed by Reichle and Koster (2003).
The error {(i,],t) is applied to the soil moisture amounts, W(i,j,t).u, in the Catchment LSM’s subsurface
moisture reservoirs (i.e., its root zone excess and catchment deficit variables) at that location in year ¢
from the CTRL simulation; this is done by modifying the standard normal deviate, or Z-score, of each soil

moisture quantity:
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where W(i,j,t)per is the degraded, or perturbed, soil moisture to be used in the experiment forecast,
W(i,j) is the mean of the soil moisture (for that time of year) at the grid cell, o is the corresponding
standard deviation across the years, and ¢ is the user-imposed scaling factor that determines the average

size of the imposed error. Soil moistures were naturally constrained to lie within realistic bounds during

this transformation, and this may modify slightly the effective values of & used; these slight modifications,



however, are implicitly accounted for in our plots, which will show streamflow forecast skill versus actual
soil moisture error rather than versus the precise value of the imposed &.

In analogy to the reference forecast experiment, each “imposed error” forecast experiment
consists of a series of 3-month forecasts, one for each season of each year, using a single value of €. The
skill level is again computed as the correlation coefficient, rq.os, between the simulated streamflows in a
basin and the observed streamflows over the multi-decadal period. In fact, for thoroughness, we repeat
the forecast experiment with a given € value ten times, allowing for ten different sets of realizations of the
€(1.j,t) field; the resulting ten rq..s values (which are, of course, similar) are averaged together prior to
plotting. A total of six experiments are performed, with increasing levels of error: € is set in turn to 0.1,

0.3,0.6,1, 1.5, and 2.

c. Results

Prior to comparing the forecasts with observations, we show in Figure 2 the temporal correlation
coefficient over the multi-decadal period, at each grid cell, between model quantities in the reference
experiment and those in two of the experiments with imposed soil moisture error. Setting € to 0.3
produces, for the April-June (AMJ) forecasts, initial soil moisture contents on April 1 that correlate with
those of the reference simulation with a largely uniform correlation coefficient (rw) of about 0.9 (top left
panel of Figure 2). The correlation coefficient for April 1 soil moisture drops to about 0.5 when ¢ is set to
1.0 (top right panel of Figure 2). Again, the spatial distribution of this correlation is fairly uniform, an
indication that the error generation technique was applied correctly.

The corresponding correlations between the forecasted AMJ runoff rates in the reference
experiment and those in the experiments with imposed error are similar but show some important
differences. For the e=0.3 case (bottom left panel of Figure 2), the correlation for forecasted runoft (rg) is
about the same as that for soil moisture except in some western mountainous regions, for which it is

reduced significantly, and along a north-south swath down the center of the country, for which it is



reduced slightly. This pattern of ry reduction is also found for the e=1.0 case (bottom right panel of
Figure 2). The reductions, which result from nonlinear runoff-generating processes in the model, should
act to amplify any streamflow forecast error associated with the inaccurate initialization of soil moisture.

Of course, a high correlation in Figure 2 does not imply significant skill in streamflow forecasts,
since the reference experiment itself may have limited skill. We now turn to a comparison of forecasted
streamflows with observations, with an eye toward showing how the imposition of soil moisture error
(beyond that which already exists in the reference experiment) translates to increased error in streamflow
forecasts. Again, we focus our analysis on the hydrological basins shown in Figure 1, which cover a wide
range of climatic regimes.

Figure 3 provides a sample set of results, focusing on JAS streamflow forecasts (i.e., the 3-month
forecasts with July 1 initialization) in the Red River Basin. Each dot in the figure represents a different
experiment, i.e., it shows the results for a unique value of €. The dot’s ordinate is located according to the
average skill in streamflow prediction obtained in the experiment, measured as the correlation coefficient
(rg.obs) between the forecasted JAS streamflow totals and the observed totals. (Note that this can easily be
converted to an RMSE measure of skill through the application of known time series moments; see
Entekhabi et al. 2010a.) To compute the dot’s abscissa, which represents the imposed soil moisture error,
we average the grid cell values of ryw for July 1, as illustrated in Figure 1 for two of the experiments,
across the examined basin. The dot at ry=1 thus represents the forecast skill obtained with the reference
forecasts. As expected, the imposition of greater soil moisture error (i.e., lower values of ry) leads to a
decrease in streamflow forecast skill. The key result of Figure 3, however, is the near linearity of this
reduction in error, in the form of a direct relationship between ry and rq.os — despite the small but
significant impacts of nonlinearity indicated for this region in Figure 1, the forecast skill of each
experiment is reduced from that of the reference experiment by a factor of about ry. The regression line

fitted through the points approximately goes through the origin — the mark of a direct linear relationship.



Figure 4 provides the results, in the same form, for all twenty basins and all four seasons. A near-
linear decrease of forecast skill with increasing soil moisture error (decreasing ry) is seen here for all
cases. Most of the plots show direct linear relationships, presumably reflecting the first-order agreement
between the rw and rq values plotted in Figure 2. There are exceptions, however. First, for larger basins
(those near the top of the figure), the fall-off in the skill for a given decrease in ry is not as large as would
be indicated by a direct relationship; the y-intercept of the regression line for these basins tends to be
positive. This presumably reflects the e-folding decorrelation length scale (2 degrees) of the error fields
imposed. For a large enough basin, the effects of the soil moisture errors imposed in different large-scale
(2 degree scale) subareas may cancel each other out. For the smaller basins, which are closer to a 2
degree scale, the imposed soil moisture errors on a given forecast start date are necessarily more uniform.
(This is, in fact, verified with additional experiments, not shown here. In these additional experiments,
we find that rq o for a given value of € decreases with increasing decorrelation length scale only in the
larger basins.)

Second, and in contrast, some small basins lie in areas for which nonlinearities amplify the
translation of soil moisture error into runoff production error (see Figure 2 and accompanying discussion),
and these basins, as expected, sometimes show a faster reduction of runoff forecast skill with decreasing
rw then would be indicated by a direct relationship (i.e. the regression line has a negative y-intercept).
Examples include the Rio Puerco, Sacramento, and Gunnison River Basins. Note that while the reduction
is faster, it is also still essentially linear.

To illustrate the translation of soil moisture error into streamflow prediction error with a concrete
example, we show in Figure 5 the translation associated with the prediction of a specific hydrological
drought. Streamflow during June-August, 1984, was anomalously low in the Red River (as measured in
Arthur City); the observations show that the naturalized streamflow during this period was one standard
deviation below the mean. The forecast model with no imposed soil moisture error (¢=0) reproduced this

anomaly well. (Note that such a strong agreement is reasonably frequent but not typical.) As soil



moisture error increases, the magnitude of the streamflow deficit, averaged across the ten ensemble
members, is seen to decrease, while the spread of the predictions across the ensemble members is seen to
increase. For the maximum imposed error (¢=2), the predicted streamflow deficit, averaged across the ten
ensemble members, is about 0.3 standard deviations below the mean, with two of the ensemble members

for this experiment predicting a streamflow surplus.

d. Implications for improved soil moisture estimates

The initial soil moistures used in the reference experiment, which were derived by driving the
land model with antecedent meteorological forcing, are far from perfect given imperfections in the
forcing data and in the model’s parameterizations. Important improvements in initialization accuracy are
expected from new data sources and new techniques for soil moisture estimation. The ingestion into a
data assimilation system of satellite-based soil moisture estimates, as from the SMOS and SMAP satellite
missions, holds particular promise.

To see how the expected increases in accuracy might affect streamflow forecasts, consider the
schematic shown in Figure 6. The abscissa represents ry.qum, the correlation between the estimated time
series of initial soil moisture contents and the (unknown) true time series. For the sake of presentation
only, we assume in this figure that the reference set of forecasts discussed above has an ry.gun, 0of 0.8 in
the considered basin. (We have, of course, no a priori way of knowing what ry_qq 1s.) Given the
independence between the actual errors in our reference time series and the errors we impose through (1)
in our experiments, it can be shown that the .y, values for the individual “imposed error” experiments
are simply their ry values (i.e., their correlations against the reference time series) multiplied by 0.8. The
relationship between streamflow forecast skill and soil moisture estimation skill, where the latter is now
assumed measured against an unknown truth, remains linear under this transformation. The plot thereby
provides a simple estimate of the increase in streamflow forecast skill that would stem from an increase in

soil moisture initialization accuracy:
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________ = S = 0.7 (in this example), (2)

0 T'w-truth
where S is the slope of the line in the plot.

Knowledge of the true value of S would be quite valuable, since it would allow us to translate
improvements in soil moisture estimation into quantitative estimates for the associated improvement in
streamflow forecast skill. Obtaining S, however, is impossible given our lack of knowledge of rw.qun for
the reference forecasts — we cannot evaluate ., Without the necessary comprehensive observations of
historical soil moisture. Nevertheless, we do have an estimate for S, the minimum possible value of S:
Swmin 18 the slope obtained when 1., for the reference experiments is assumed to be 1. In essence, Spin
provides the lower limit of forecast skill increase associated with an improved soil moisture initialization
— any skill increase associated with improved soil moisture estimation will be at least as large as that
suggested by Spin. The Snin values for the different basins and seasons examined above are simply the
slopes of the fitted lines in Figure 4.

The Sy, values for the different basins are plotted, for each season, in Figure 7. The minimum
sensitivity of streamflow forecast skill to improvements in soil moisture estimation is seen to be largest in
the summer and fall, particularly in mountainous areas. Again, the actual improvement in forecast skill
for a given improvement in soil moisture estimation should be larger than the values shown. Note that by
construction, the plots are similar to the raw streamflow forecast skill plots shown for the “Exp3”
simulations by Mahanama et al. (2012); the differences stem only from the use of one land model here
and, more importantly from a scientific standpoint, from the fact that, for reasons discussed above, not all
of the fitted lines through the points in Figure 4 go through the origin.

Finally, we note the potential for rough estimates of the change in streamflow prediction skill
(i.e., the change in rq.obs) associated with a specific, areally-averaged change in the RMSE of soil moisture

estimation — a quantity more familiar to many soil moisture scientists. To obtain such estimates, we begin
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with the relationship between unbiased root mean square error (ubRMSE) and correlation coefficient, 7, as

provided by Entekhabi et al. (2010a):

UWbRMSE = (6% + O7iue — 2 T Gegt Otrue) 3)
where for this discussion G, is the standard deviation (in time) of the estimated soil moisture, Gy, is the
true standard deviation of soil moisture, and r is equivalent to ry.,..» as discussed above. Rearranging (3),
and assuming that a reduction in ubRMSE (e.g., through an improvement in an observation system) has

no impact on Gy OF Oy , We compute the derivative of ry.q,q With respect to ubRMSE:

"""""""" = 7ubRMSE /(Gest Gtrue:) ) (4)
0 ubRMSE

from which we derive the derivative of streamflow prediction skill (rq.obs) With respect to ubRMSE:

.......... (—ubRMSE) / (Gest Oimue) s (5)

where again, 0rq.obs/Orw.rn has a minimum possible value given by the slope of the rq.ops — Iy relationship
in Figure 3.

Utilization of (5), of course, is difficult given the need to quantify accurately both &, and
ubRMSE in the general absence of soil moisture observations. To give a flavor, though, for the types of
values that might be involved, consider the Ohio Basin, the large basin in eastern CONUS in Figure 1.
Assuming (arbitrarily) that ubRMSE for this basis in 0.02 (volumetric percent) prior to using satellite-
based soil moisture information, and that o is the same as 6., as computed from the model simulation
(.027 volumetric percent), we can use (5) to estimate that reducing ubRMSE to 0.015 would cause rq.obs

for JJA streamflow forecasts to increase from 0.58 to at least 0.65.
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e. Supplementary result: Lower bound for present-day skill in estimating soil moisture

A curious side benefit of the linearity found in Figure 3 is worth mentioning. The linearity allows
us to infer a minimum value for ry.qum, 1.€., an estimate for a lower bound for how well we know soil
moisture state based on present-day observational networks. The idea is illustrated in Figure 8. In the
plot, the dots along the black line represent pairs of ry and rq._qs from a given panel in Figure 3. Recall
that in Figure 6, the (unknown) value of rw.qm Was arbitrarily assumed to be 0.8, allowing the abscissas of
the points to be scaled by that factor; performing the same operation on the points in Figure 8 yields the
points along the blue line. Notice that according to the blue line, a perfect knowledge of soil moisture (r,
=1, against truth) would lead to a streamflow forecast skill of r.,,s=0.525. That is, if with current
measuring systems we know soil moisture with an ry_qq of 0.8, then (making use of the evident linearity)
Ig.obs=0.525 is the best streamflow forecast skill we could ever attain through improvements in soil

moisture measurement systems.

Now consider the scaling that brings the points on the black line to the red line in Figure 8. With
this scaling, streamflow is forecasted perfectly when soil moisture is perfectly known. Any further
scaling would lead to the impossible condition of rq.s > 1 for perfectly known soil moisture, which has
an important implication: although we do not know how well soil moisture is estimated with current
measurement systems (that is, we do not know the value of .. for the reference forecast experiment),
I'w.wuth Cannot be smaller than the abscissa of the black dot on the red line in Figure 8 (about 0.43), for a
smaller value would imply the aforementioned impossible condition. Because streamflows also depend
on precipitation during the forecast period and thus can never be forecasted perfectly with soil moisture
information alone (i.e., rq.ops Will be always be less than 1 even if ry were 1), the actual value of rw.yum

will presumably be significantly higher than the estimated minimum value.

This estimation procedure requires more extrapolation across the fitted line than the derivative

calculation associated with Figure 6, and thus the degree to which the relationships are not direct (i.e., do
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not go through the origin) may limit the accuracy of the estimates produced. With this caveat, Figure 9
provides, for each basin and season addressed in Figure 4, estimates of the lower bound of ry_qus as
produced with the procedure. The calculations imply, for example, that for the Ohio River Basin, the
model-based soil moistures used in our analyses, which are based on historical time series of
meteorological forcing, compare with the true (unknown) soil moistures there with a correlation
coefficient higher than 0.35 on January 1 and higher than 0.5 on July 1. The lower bounds for soil
moisture estimation skill exceed 0.7 for some locations and seasons. Such estimates of soil moisture
accuracy at the large scale, of course, are generally very difficult to obtain; the streamflow-based

diagnostic provides a lower bound for a highly elusive quantity.

Particularly low values are seen for several larger basins on April 1. This may reflect the fact that
snowpack in these basins on April 1 is more important than soil moisture for determining April-June
streamflow. As a result, any streamflow-based diagnostic of how well we know soil moisture on April 1

would presumably be biased low.

3. Impact of an Increased Spatial Resolution of Precipitation on Streamflow Forecast Skill
a. Overview of experiment

As discussed in Section 1, seasonal precipitation forecasts from global numerical models can be
used to force a hydrological model to produce seasonal streamflow forecasts. The mechanisms that
control streamflow generation, however, operate at spatial scales much smaller than those captured by the
global modeling systems. While a hydrological model may be calibrated to operate efficiently with
coarse resolution precipitation products, the subgrid (high resolution) distribution of precipitation does
contain information that the coarse-scale data necessarily lacks, and a distributed hydrological model
might, in theory, be able to transform this extra information into improved streamflow simulation. It is
natural to ask whether a realistic increase in the spatial resolution of the precipitation forcing prior to its

application in a high resolution hydrological model would improve the forecast of large-scale streamflow.
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Consider, for example, the two hydrological modeling designs shown in Figures 10a and 10b.
Both designs cover the hydrological basin with a high resolution array of surface modeling elements, and
both produce, through application of meteorological forcing, streamflow estimates (Q; and Q) at the
basin’s outlet. Shown in shading is the nature of the precipitation used in the two cases — in Figure 10a,
the precipitation is applied at the coarse scale (e.g., at the resolution of the precipitation forecast model),
whereas in Figure 10b, the coarse precipitation data is disaggregated spatially in a way that conserves the
total precipitation volume but captures its subgrid variability. We can restate our question as follows:
assuming the forecasted precipitation and its disaggregation to the finer scale is accurate, is Q, inherently
more accurate than Q,?

Of course, under these assumptions, the high resolution streamflows produced in Figure 10b
have, by definition, useful information not allowed by the set-up in Figure 10a. In this analysis we do not
address the impact of the disaggregation on high resolution streamflow data; we only address the impact
of the disaggregation on the large-scale-average streamflow, as represented in the figures by Q,; and Q.

Note also that we will effectively quantify here the maximum possible impact of the
disaggregation on accuracy by effectively assuming perfect seasonal precipitation forecasts and a perfect
methodology for the disaggregation of the precipitation in both space and time. The idealized design of
this experiment is thus in stark contrast to that employed in section 2 above, in which true estimates of
forecast skill were derived from a comparison of model-forecasted streamflows to observations. In the
present design, we purposefully avoid presenting comparisons of forecasted runoffs with observations;
the shortness of the time period considered (as determined by the availability of high-resolution
precipitation forcing data), as well as errors in the precipitation data and in the model itself, prevent the
observations from providing any definitive conclusions. The justification for our idealized strategy is that
observations are not needed to address the broader question posed here, namely, would disaggregation be
useful even if all system components were perfect? If no impact is seen even under such idealized
conditions, then a disaggregation procedure applied to a real-time seasonal forecast would have no hope
of being beneficial.
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Two pairs of offline simulations are compared in this analysis. Each simulation covers the
CONUS regime, applying the Catchment LSM at a resolution of 1/8°x1/8° over the period 1981-2006
after a multi-decadal spin-up procedure. In the first pair of simulations (labeled HRP and LRP for “high
resolution precipitation” and “low resolution precipitation”), we characterize the land surface with
spatially varying fields (at 1/8°%1/8° resolution) of vegetation, soil, and topography parameters derived
from observations. All meteorological forcing except for precipitation is derived from the observations-
based dataset of Sheffield et al. (2006); the 1°x1° (non-precipitation) forcing in that dataset is applied
uniformly across the 64 1/8°x1/8° cells contained within. Simulations HRP and LRP differ only in the
nature of the precipitation forcing. In Simulation HRP, the precipitation is taken from the 1/8°x1/8°
observations-based NLDAS dataset (Xia et al., 2012), whereas Simulation LRP uses the same dataset, but
with a twist: the 64 1/8°x1/8° values of a given hour’s precipitation in a given 1°x1° cell are averaged and
then applied uniformly across those 64 cells. The design of Simulations LRP and HRP thus mimics that
illustrated in Figures 10a and 10b — both simulations apply the same precipitation volumes to the land
surface during each time step, but the volumes are disaggregated in a realistic way in Simulation HRP.

Results are processed separately for each 1°x1° cell across CONUS, and thus in effect we
examine the simplified view of the problem illustrated in Figures 10c and 10d. For a given 1°x1° cell, we
compute, for each year in 1981-2006, the runoff produced in Simulation LRP spatially averaged over the
64 higher resolution cells contained within it. The resulting time series of 26 annual totals is then
regressed against the corresponding time series generated from Simulation HRP. The square of the
correlation coefficient between the two time series (r*) indicates the degree to which a large-scale (1°x1°)
runoff estimate is affected by the disaggregation of precipitation. Ifr is small, disaggregation has an
important impact and may, if precipitation forecasts, disaggregation procedures, and modeling approaches
are indeed accurate, contribute to the accuracy of large-scale streamflow forecasts. If, however, r* is close
to 1, we cannot expect precipitation disaggregation to contribute to streamflow forecast skill, regardless of
how accurate the disaggregation is. The r* diagnostic could, in principle, be similarly computed from
monthly or seasonal runoff totals.
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The second set of parallel simulations (Simulations LRP-h and HRP-h, where h represents
“homogeneous”) is identical to the first set except for the homogenization of the land surface properties —
both simulations apply the soil, vegetation, and topographic parameters of a representative grid cell in
Central Kansas to every grid cell in CONUS. The idea behind this second set of simulations is to
demonstrate that the most dominant spatial pattern of r* determined from Simulations LRP and HRP does
not simply reflect spatial patterns of land surface properties; it instead reflects large-scale spatial patterns
in the precipitation forcing itself.

A note about the nature of the NLDAS precipitation data is appropriate here. The data are based
in large part on gauge measurements, and gauge density tends to be lower in the western half of CONUS.
While the dataset contains significant variability at scales below 1 degree even in sparsely gauged
regions, one might wonder if the lower gauge density in the west will have an impact on the results there
—1i.e., whether in this experiment the low density in the west will reduce the apparent impact of
precipitation disaggregation there. The precise impact of gauge density variations on our results is very
difficult to quantify. Nevertheless, as will be shown below, the western half of CONUS is found to be
more affected by disaggregation than the eastern half despite any disadvantage it has with regard to gauge
density. We can safely assume that this distinction, the main result of this experiment, would be retained

if precipitation gauge density were uniformly high across CONUS.

b. Results

Results are shown in Figure 11a. The r* values are seen to be very close to 1 in the eastern half of
CONUS, implying that annual runoffs generated there with the coarse-scale and fine-scale precipitation
data are essentially the same. The 1 values are particularly low along a longitudinal band near the center
of CONUS, and they are higher, though still often significantly below 1, in the western third of CONUS.
Figure 11b shows in turn the corresponding results from Simulations HRP-h and LRP-h, the simulations
for which spatial variations in land surface properties do not play a role. The stark contrast in the r*
values in the western and eastern halves of CONUS is even more apparent in these latter simulations,

17



demonstrating conclusively that the east-west contrast in r” is driven by large-scale spatial variations in
the meteorological forcing. Note, however, that in the west, the r* values produced with Simulations HRP
and LRP do differ in many places from those produced with Simulations HRP-h and LRP-h; in these
regions, the imposed land surface properties do have an impact on r* and thus on the potential usefulness
of precipitation disaggregation with this system. Identifying the particular land surface properties in play
here would require additional simulations; we note from the maps, however, that they are not solely
associated with topographic variability.

The east-west disparity in r*, the dominant pattern seen in the maps, has a straightforward
explanation. Over long time scales, such as the annual scale considered here, precipitation is roughly
balanced by the sum of evaporation and runoff. Evaporation is generally controlled by energy availability
in the east and by water availability in the west, and as a result, for a given precipitation forcing, so is
runoff. As argued now, this distinction manifests itself in the r* field.

Figure 12 shows how energy-limited evaporation mitigates the ability of precipitation
diaggregation to affect the generation of large-scale runoff. The top of the figure shows three different
disaggregations of a given, coarse-scale precipitation volume to the fine scale, the third being, in fact, a
simple, uniform application of the precipitation. Under the assumption that evaporation is controlled by
the availability of energy rather than water at the surface, and under the further assumption that the
average energy input across the large-scale area is the same, evaporation is shown in the lower part of the
figure to be constant across the high resolution elements. By construction, then, the sum of the residual
water across the high resolution elements is the same for all three disaggregations. It is this sum of
residuals that can contribute to the large-scale runoff, especially when averaged over long time periods,
for which changes in storage are insignificant. Because the sum of the residuals is equal, the total runoff
is the same regardless of the disaggregation approach (or lack of such an approach) used.

A region with soil moisture-limited evaporation, on the other hand, would not show this behavior.
Evaporation in soil moisture-limited regions would vary across the fine resolution elements and from time
step to time step, so that the sum of residuals need not be constant. Different disaggregation approaches
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(or a lack of disaggregation) would thereby produce different large-scale runoff rates, and the r*
diagnostic would be less than unity.

Figures 11c and 11d show two measures of evaporation regime. Figure 11¢ shows Budyko’s
dryness index (Budyko, 1971), defined as the ratio of annual net radiation (converted to water units using
the latent heat of vaporization) to annual precipitation. The reflected shortwave and outgoing longwave
radiation components of the net radiation were derived from Simulation HRP; the remaining radiation
components and the precipitation were taken from the prescribed forcing. Clearly seen in this field are
the low (sub-unity) dryness indices in the east, implying that the east is indeed characterized by energy-
controlled evaporation rates and thus, according to the argument outlined in Figure 12, not amenable to
improved forecasts through precipitation disaggregation. This is underlined further by Figure 11d, which
shows the ratio of the variance of annual evaporation to the variance of annual precipitation, as derived
from Simulation HRP. Evaporation in the eastern half of CONUS clearly does not vary much from year
to year relative to precipitation (as expected given the demonstrated evaporative regime there), implying
that the “constant evaporation” assumption used when discussing Figure 12 is indeed valid in the east.

Figure 13 provides more evidence that this mechanism is in play and also shows results for a
monthly, rather than yearly, averaging period. The twelve panels in Figure 13 show the r* values obtained
for Simulations LRP and HRP when the runoffs are averaged over each month of the year independently.
Clearly seen, especially in the center of CONUS, is the decrease in r* during the summer months, when
evaporation is highest. In the winter months, when evaporation there is energy limited, the r* values are
high.

The above discussion brings up a question: could the accurate downscaling of temperature and
net radiation (rather than precipitation) in the east, particularly in the summer, have a positive impact on
large-scale streamflow forecast skill? Though one might expect that the (non-static) spatial variability of
temperature or net radiation would be substantially less than that of precipitation, so that the impacts of
their downscaling would be reduced, additional analyses (not performed here) would be needed to address
this question adequately.
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One might also wonder if the noted behavior in the east in Figure 12 breaks down during drought
periods, when water availability rather than energy availability has the potential to limit evaporation.
Figure 14 suggests that this is not the case, at least according to this particular land model’s simulation of
Georgia drought periods in the 2000s. The figure shows, for a representative 1° x 1° grid cell (at 83.5°W,
33.5°N), the simulated time series of annual precipitation (black curve), evaporation (red curves), and
runoff (blue curves), with results from Simulations LRP and HRP shown as dashed curves and solid
curves, respectively. The years 1999-2002 and 2006-2008 have particularly low precipitation at this cell,
and this low precipitation is manifested almost completely in reduced runoff rates — evaporation rates are
not reduced during these periods, and thus the arguments outlined in Figure 12 suggest that Simulations
LRP and HRP should continue to show similar runoff estimates during this time. They indeed do, as
indicated by the comparisons of the dashed and solid blue curves. Of course, this result might be different
for a more severe drought or with a different land surface model. Note, however, that the land surface
does have a propensity to convert a precipitation anomaly into a runoff anomaly rather than an
evaporation anomaly in wetter regions, as demonstrated, for example, by Koster et al. (2006; their figure

7) with a purely observational dataset.

4. Summary and Discussion

The analyses above use multi-decadal, distributed simulations with an offline land modeling
system to address some unanswered questions in the science of seasonal streamflow prediction, a science
that is key to addressing societal concerns regarding water supply and drought. In the first analysis,
streamflow forecast skill was found, for the most part, to decrease linearly with increasing soil moisture
initialization error. This allows the inference of the increase in skill that should be achieved with
improvements in soil moisture monitoring, as made possible, for example, with the advent of space-borne
L-band soil moisture sensors. In the second analysis, we examined how streamflow forecast skill is
connected to the information content of subgrid precipitation distributions, as might be established with a
downscaling algorithm applied to the output of global seasonal forecast systems. Here we found that this
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information content would have little impact on streamflow prediction in the eastern half of CONUS,

apparently due to the fact that this region is characterized by energy-limited evaporation.

We should mention, of course, the fact that our results are potentially model-dependent.
Mahanama et al. (2012) examined streamflow forecasts with four different land modeling systems and
found that the different systems varied in the skill levels they produced; the precise values of rq g5 in
Figures 3 and 4 and of the derivatives plotted in Figure 7 would thus presumably differ if a different land
model were used. Also, the values of the sub-unity correlations plotted in 11a and 11b might also differ if
computed with a land model with a different treatment, for example, of topographic impacts on
hydrology. We expect, however, that the linearity shown in Figures 3 and 4 and the impact of
evaporative regime illustrated in Figure 11 are robust results. This robustness can be verified through a

repeat of our experiments with alternative models.

We should also emphasize again that the second study does not purport to be a full analysis of
precipitation downscaling, which would involve more than disaggregation — it would also involve careful
calibration and bias correction. Here we examine only a subset of the downscaling problem: how the
information content of high resolution versus low resolution precipitation data affects the simulation of
large-scale streamflow. Yuan and Wood (2013) found that the main effect of downscaling in the Ohio
basin is to correct the errors of the atmospheric model providing the forecasted meteorology; any
advantage from precipitation disaggregation there is likely not as important, a result consistent with our

findings in Figure 11 (Xing Yuan, pers. comm.., 2012).

The lower bounds of soil moisture estimation skill provided in Figure 9 represent still another
example of the potential usefulness of a distributed land modeling network for the analysis of streamflow
prediction and associated hydrological processes. We expect that such systems still have great untapped

potential as testbeds for basic hydrological research.

21



Acknowledgments: The authors thank Lifeng Luo and Xing Yuan for their helpful comments on the
precipitation disaggregation study. This work was supported by the Modeling, Analaysis, Predictions,
and Projections Program of the NOAA/Climate Program Office and by the NASA Terrestrial Hydrology

Program.

22



References

Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005:
Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 985-1001.

Bierkens, M. F. P., and L. P. H. van Beek, 2009: Seasonal predictability of European discharge:
NAO and hydrological response time. J. Hydromet., 10, 953-968.

Boone, A., F. Habets, J. Noilhan, and coauthors 2004: The Rhone-Aggregation Land Surface

Scheme Intercomparison Project: An Overview, J. Climate, 17, 187-208.

Bowling L. C., D. P. Lettenmaier, B. Nijssen and coauthors 2003: Simulation of high latitude
hydrological processes in the Torne-Kalix basin: PILPS Phase 2e 1: Experiment

description and summary intercomparison, Global and Planetary Change, 38, 1-30.

Budyko, M. 1., 1974: Climate and Life. Academic Press, New York, 508 pp.

Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann.
Manage., 111, 157-170.

Ducharne A, R. D. Koster, M. J. Suarez, A. M. Stieglitz, and P. Kumar 2000: A catchment-based
approach to modeling land surface processes in a general circulation model. (2) Parameter
estimation and model demonstration. J Geophys Res 2000;105(D20):24823-38.

Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, 2010a: Performance metrics for
soil moisture retrievals and applications requirements. J. Hydromet., 11, 832-840.

Entekhabi, D., and Co-authors, 2010b: The Soil Moisture Active Passive (SMAP) mission. Proc.
IEEE, 98, 704-716.

Garen, D.C., 1992: Improved techniques in regression-based streamflow volume forecasting. J.

Water Resour. Plann. and Manage., 118, 654-670.

23



Hamlet, A.F., and D. P. Lettenmaier, 1999: Effects of climate change on hydrology and water
resources in the Columbia River Basin. J. Am. Water Resour. Ass., 35, 1597-1623.

Hamlet, A.F., D. Huppert, and D. P. Lettenmaier, 2002: Economic value of long-lead streamflow

forecasts for Columbia River hydropower. J. Water. Resour. Plann. Manage., 128, 91-101.

Kerr, Y. H., and Co-authors, 2010: The SMOS mission: New tool for monitoring key elements of

the global water cycle. Proc. IEEE, 98, doi:10.1109/JPROC.2010.2043032.

Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based
approach to modeling land surface processes in a general circulation model: 1. Model
structure, J. Geophys. Res., 105(20), 24,809— 24,822.

Koster, R. D., B. M. Fekete, G. J. Huffman, and P. W. Stackhouse Jr., 2006: Revisiting a
hydrological analysis framework with International Satellite Land Surface Climatology
Project Initiative 2 rainfall, net radiation, and runoff fields. J. Geophys. Res., 111, D22S05,
doi:10.1029/2006JD007182.

Koster, R. D., and S. P. P. Mahanama, 2012: Land surface controls on hydroclimatic means and
variability. J. Hydromet., 13, 1604-1620.

Li, H., L. Luo, E. F. Wood, and J. Schaake, 2009: The role of initial conditions and forcing
uncertainties in seasonal hydrologic forecasting. J. Geophys. Res., 114, D04114,
doi:10.1029/2008JD010969.

Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts
for seasonal hydrological predictions. J. Geophys. Res., 112, D10102,

doi:10.1029/2006JD007655.

24



Luo, L., and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal
hydrologic ensemble prediction system for the Eastern United States. J. Hydromet., 9, 866-
884.

Mahanama, S. P. P, R. D. Koster, R. H. Reichle, and L. Zubair, 2008: The role of soil moisture
initialization in subseasonal and seasonal streamflow predictability: A case study in Sri Lanka,
Adv. Water Resour., 31(10), 1333-1343, doi:10.1016/j.advwatres.2008.06.004.

Mahanama, S. P. P., B. Livneh, R. D. Koster, D. Lettenmaier, and R. Reichle, 2012: Soil
moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydromet., 13,
189-203.

Pagano, T., D. Garen, and S. Sorooshian, 2004: Evaluation of official western US seasonal water

supply outlooks, 1922— 2002, J. Hydrometeorol., 5, 896— 909.
Reichle, R. H., and R. D. Koster, 2003: Assessing the impact of horizontal error correlations in
background fields on soil moisture estimation. J. Hydromet., 4, 1229-1242.
Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and
A. Toure, etal., 2011: Assessmenet and enhancement of MERRA land surface

hydrology estimates. J. Climate, 24, 6322-6338.

Rienecker, M. M., and Co-authors, 2011: MERRA, NASA’s Modern-Era Retrospective Analysis

for Research and Applications. J. Climate, 24, 3624-3648.

Schaake, J., J. Pailleux, J. Thielen, R. Arritt, T. Hamill, L. Luo, E. Martin, D. McCollor, and F.
Pappenberger, 2010: Summary of recommendations of the first workshop on Postprocessing
and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Meteo-France,

Toulouse, Frace, 15-18 June 2009. Atmos. Sci. Lett., 11, 59-63.

25



Sheffield, J., Goteti, G., Wood, E. F., 2006: Development of a 50-year high-resolution global
dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088-3111.

Wang, E., Y. Zhang, J. Luo, F. H. S. Chiew, and Q. J. Wang, 2011: Monthly and seasonal
streamflow forecasts using rainfall-runoff modeling and historical weather data. Water
Resour. Res., 47, W05516, do1:10.1029/2010WR009922.

Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental
hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429,
doi:10.1029/2001JD000659.

Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting
approaches in the Western United States. Bull. Am. Met. Soc., 87, 1699-1712.

Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic
prediction uncertainty, Geophy. Res. Lett., 35, L14401, doi:10.1029/2008 GL034648.

Xia, Y., M. Ek, H. Wei, and J. Meng, 2012: Comparative analysis of relationshiops between
NLDAS-2 forcings and model outputs. Hydrol. Proc., 26, 467-474.

Yao, H., and A. P. Georgakakos, 2001: Assessment of Folsom Lake response to historical and
potential future climate scenarios, 2. Reservoir management. J. Hydrol., 249, 176-196.

Yuan, X., X.-Z. Liang, and E. F. Wood, 2012: WRF ensemble downscaling seasonal forecasts of
China winter precipitation during 1982-2008. Clim. Dyn., 39, 2041-2058.

Yuan, X. and E. F. Wood, 2013: Downscaling precipitation or bias-correcting streamflow? Some
implications for CGCM-based ensemble seasonal hydrologic forecast. Submitted to Water

Resour. Res.

26



Figure Captions

Figure 1. Basins examined in this analysis. The numbers are located at the stream gauge sites.

Figure 2. Top left: Time correlation, ry, between the initial (April 1) soil moisture contents used in the
reference forecast experiment (¢=0) and those used in the experiment with imposed errors corresponding
to €=0.3. Bottom left: Correlation (rg) between the multi-year time series of April-June runoff totals
generated in the reference forecast experiment (¢=0) and those generated in the experiment with €=0.3

Right panels: Same, but for € set to 1.0 rather than 0.3.

Figure 3. Plot showing how imposed soil moisture error acts to reduce streamflow forecast skill. Each
dot corresponds to a different forecast experiment. A given dot’s abscissa is the average correlation
(across the Red River Basin) between the time series of initial soil moisture contents used by the forecast
experiment and those used by the reference forecast experiment (S =0). Its ordinate is the correlation
between the forecasted streamflow for the basin (i.e., the time series of July-August totals) and the
observed streamflow. The dot at ry=1 (two dots, in fact, fall on top of each other there) thus shows the

maximum skill attained with the system for this basin and season.

Figure 4. Same as Figure 3, but for all basins (in order of size) and seasons.

Figure 5. Total streamflow in the Red River Basin (as measured at Arthur City) for July-September,
1984, from observations, from the reference forecast experiment, and from the six experiment forecasts
with imposed error. All values are shown in terms of dimensionless standard normal deviate. The

horizontal dotted lines show the means across the ensemble members.

Figure 6. Diagram highlighting the interpretation of the forecast experiment results in terms of the

sensitivity of streamflow forecast skill to improvements in the estimation of initial soil moisture.
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Figure 7. Estimates of the lower bound of S 1q.obs /S T'w.wrum (i.€., the lower bound of the sensitivity of
streamflow forecast skill to initial soil moisture accuracy), as derived from the forecast experiments. a.

JFM. b. AMIJ. c.JAS. d.OND.

Figure 8. Demonstration of how the lower bound of ry.qu, (2 measure of how well we know the true soil
moisture) can be estimated from the experiments addressing the impact of soil moisture initialization error

on streamflow forecast skill. See text for details.

Figure 9. Estimated lower bounds of ry_q, for each basin (in order of size) and season considered.

Figure 10. Schematic illustrating the disaggregation problem addressed in section 3. See text for details.

Figure 11. a. Correlation between the time series of annual runoffs generated in the experiment with
coarse resolution precipitation forcing (Simulation LRP) and those generated in the simulation with high
resolution precipitation forcing (Simulation HRP). b. The corresponding correlation between Simulation
LRP-h and Simulation HRP-h, which utilized uniform soil, topography, and vegetation characteristics
across the U.S. c. Distribution of Budyko’s dryness index (the ratio of net radiation to precipitation, made
dimensionless with the latent heat of vaporization) across the U.S. d. The ratio of the variance of annual

evaporation (from Simulation HRP) to the variance of annual precipitation.

Figure 12. Illustration of how the runoff generated in an energy-limited evaporation regime may be

unaffected by different precipitation disaggregation schemes. See text for details.

Figure 13. Correlation between the time series of monthly runoffs generated in the experiment with
coarse resolution precipitation forcing (Simulation LRP) and those generated in the simulation with high

resolution precipitation forcing (Simulation HRP) for each month of the year.
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Figure 14. Time series of annual precipitation (black lines), evaporation (red lines), and runoff (blue
lines) at a grid cell in Georgia, as produced in Simulation LRP (solid lines) and Simulation HRP (dashed

lines).
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River . . Longi- .
) Basin Area  Latitude Observation
Name Station Name 5 o tude ,
(km?) (°N) o Period
(‘W)
Hermann (includes
. . basins 2,4, 8, &
1  Missouri 19) 1353275 38.71 92.75 1920-1997
Ft. Randall Dam
2 Missouri (includes basins 4, 682465 43.07 98.55 1950-2009
8, & 19)
3 Ohio Metropolis 525770 37.15 88.74 1928-2010
Garrison
4  Missouri Reservoir(includes 469826 47.39 101.39 1950-2003
basins 8, & 19)
Upper
5 R Grafton 443660 38.90 90.30 1935-2010
Mississippi
Lees Ferry (includes
6 Colorado . 289562 36.87 111.58 1920-2003
basins 12 & 18)
7  Snake Ice Harbor Dam 281015 46.25 118.88 1927-1992
Fort Peck Dam
8  Milk 149070 48.04 106.36 1950-2009
(includes basin 19)
9  Arkansas Ralston 141064 36.50 98.73 1940-2008
10 Arkansas-Red  Arthur City 115335 33.88 95.50 1938-2001
11 Alabama Clairborne 56900 31.55 87.51 1950-1993
12 Green Greendale 50116 40.91 109.42 1920-2003
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13 Apalachicola Sumatra 49728 29.95 -85.02 1950-1993
14 Delaware Memorial Bridge 28567 39.69 75.52 1948-1987
15 Potomac Point of Rocks 25000 39.27 77.54 1950-1996
16 Sacramento Bend Bridge 23051 40.29 122.19 1920-2003
17 Gunnison near .Grand 20533 38.98 108.45 1920-2003
Junction
18 Musselshel Moseby 20321 46.99 107.89 1941-2003
19 Rio Puerco Bernardo 19036 34.41 106.85 1940-2003
20 Yakima near Parker 9479 46.50 120.44 1925-2003

Table 1. Characteristics of the basins examined in this study. Three small basins examined in Mahanama
et al. (2012) are not examined here due to apparent inconsistencies in the observations-based precipitation

and streamflow datasets; see Koster and Mahanama (2012) for details.
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Nt belongs to 8 (also 1,2 & 4)

Figure 1. Basins examined in this analysis. The numbers are located at the stream gauge sites.
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Figure 2. Top left: Time correlation, r,, between the initial (April 1) soil moisture contents used in the
reference forecast experiment (¢=0) and those used in the experiment with imposed errors corresponding
to e=0.3. Bottom left: Correlation (rq) between the multi-year time series of April-June runoff totals
generated in the reference forecast experiment (¢=0) and those generated in the experiment with £=0.3
Right panels: Same, but for € set to 1.0 rather than 0.3.
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Figure 3. Plot showing how imposed soil moisture error acts to reduce streamflow forecast skill. Each
dot corresponds to a different forecast experiment. A given dot’s abscissa is the average correlation
(across the Red River Basin) between the time series of initial soil moisture contents used by the forecast
experiment and those used by the reference forecast experiment (¢=0). Its ordinate is the correlation
between the forecasted streamflow for the basin (i.e., the time series of July-August totals) and the
observed streamflow. The dot at ry=1 (two dots, in fact, fall on top of each other there) thus shows the
maximum skill attained with the system for this basin and season.
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Figure 4. Same as Figure 3, but for all basins (in order of size) and seasons.

35



Low Flow in Red River (Arthur City)
July-September, 1984
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Figure 5. Total streamflow in the Red River Basin (as measured at Arthur City) for July-September,
1984, from observations, from the reference forecast experiment, and from the six experiment forecasts
with imposed error. All values are shown in terms of dimensionless standard normal deviate. The
horizontal dotted lines show the means across the ensemble members.
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Figure 6. Diagram highlighting the interpretation of the forecast experiment results in terms of the
sensitivity of streamflow forecast skill to improvements in the estimation of initial soil moisture.
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Minimum Sensitivity of Streamflow Forecast Skill to Soil Moisture Estimation Skill

Figure 7. Estimates of the lower bound of A 1g.bs /A I'w.irum (1-€., the lower bound of the sensitivity of
streamflow forecast skill to initial soil moisture accuracy), as derived from the forecast experiments. a.
JFM. b. AMJ. c.JAS. d.OND.
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Figure 8. Demonstration of how the lower bound of ry_qu (2 measure of how well we know the true soil
moisture) can be estimated from the experiments addressing the impact of soil moisture initialization error
on streamflow forecast skill. See text for details.
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Figure 9. Estimated lower bounds of ry_q, for each basin (in order of size) and season considered.
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a. Distributed hydrological model with b. Distributed hydrological model with high
coarse resolution precipitation data resolution (downscaled) precipitation data
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Figure 10. Schematic illustrating the disaggregation problem addressed in section 3. See text for details.
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Figure 11. a. Correlation between the time series of annual runoffs generated in the experiment with
coarse resolution precipitation forcing (Simulation LRP) and those generated in the simulation with high
resolution precipitation forcing (Simulation HRP). b. The corresponding correlation between Simulation
LRP-h and Simulation HRP-h, which utilized uniform soil, topography, and vegetation characteristics
across the U.S. c. Distribution of Budyko’s dryness index (the ratio of net radiation to precipitation, made
dimensionless with the latent heat of vaporization) across the U.S. d. The ratio of the variance of annual
evaporation (from Simulation HRP) to the variance of annual precipitation.
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Figure 12. Illustration of how the runoff generated in an energy-limited evaporation regime may be
unaffected by different precipitation disaggregation schemes. See text for details.
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Figure 13. Correlation between the time series of monthly runoffs generated in the experiment with
coarse resolution precipitation forcing (Simulation LRP) and those generated in the simulation with high
resolution precipitation forcing (Simulation HRP) for each month of the year.
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Annual fluxes at Georgia grid cell (83.5°W, 33.5°N)
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Figure 14. Time series of annual precipitation (black lines), evaporation (red lines), and runoff (blue
lines) at a grid cell in Georgia, as produced in Simulation LRP (solid lines) and Simulation HRP (dashed
lines).
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