7 research outputs found

    Sum-Frequency Signals in 2D-Terahertz-Terahertz-Raman Spectroscopy

    Get PDF
    We demonstrate that halogenated methane (HM) two-dimensional (2D)-terahertz-terahertz-Raman (2D-TTR) spectra are determined by the complicated structure of the instrument response function (IRF) along ω₁ and by the molecular coherences along ω₂. Experimental improvements have helped increase the resolution and dynamic range of the measurements, including accurate THz pulse shape characterization. Sum-frequency excitations convolved with the IRF are found to quantitatively reproduce the 2D-TTR signal. A new reduced density matrix model that incorporates sum-frequency pathways, with linear and harmonic operators, fully supports this (re)interpretation of the 2D-TTR spectra

    Sum-Frequency Signals in 2D-Terahertz-Terahertz-Raman Spectroscopy

    Get PDF
    We demonstrate that halogenated methane 2D-Terahertz Terahertz Raman (2D-TTR) spectra are determined by the complicated structure of the instrument response function (IRF) along f1f_1 and by the molecular coherences along f2f_2. Experimental improvements have helped increase the resolution and dynamic range of the measurements, including accurate THz pulse shape characterization. Sum-frequency excitations convolved with the IRF are found to quantitatively reproduce the 2D-TTR signal. A new Reduced Density Matrix model which incorporates sum-frequency pathways, with linear and harmonic operators fully supports this (re)interpretation of the 2D-TTR spectra.Comment: Supplemental information available after main tex

    Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries

    Get PDF
    The polymer binders used in most lithium-ion batteries (LIBs) serve only a structural role, but there are exciting opportunities to increase performance by using polymers with combined electronic and ionic conductivity. To this end, here we examine dihexyl-substituted poly(3,4-propylenedioxythiophene) (PProDOT-Hx₂) as an electrochemically stable π-conjugated polymer that becomes electrically conductive (up to 0.1 S cm⁻¹) upon electrochemical doping in the potential range of 3.2 to 4.5 V (vs Li/Li⁺). Because this family of polymers is easy to functionalize, can be effectively fabricated into electrodes, and shows mixed electronic and ionic conductivity, PProDOT-Hx₂ shows promise for replacing the insulating polyvinylidene fluoride (PVDF) commonly used in commercial LIBs. A combined experimental and theoretical study is presented here to establish the fundamental mixed ionic and electronic conductivity of PProDOT-Hx₂. Electrochemical kinetics and electron spin resonance are first used to verify that the polymer can be readily electrochemically doped and is chemically stable in a potential range of interest for most cathode materials. A novel impedance method is then used to directly follow the evolution of both the electronic and ionic conductivity as a function of potential. Both values increase with electrochemical doping and stay high across the potential range of interest. A combination of optical ellipsometry and grazing incidence wide angle X-ray scattering is used to characterize both solvent swelling and structural changes that occur during electrochemical doping. These experimental results are used to calibrate molecular dynamics simulations, which show improved ionic conductivity upon solvent swelling. Simulations further attribute the improved ionic conductivity of PProDOT-Hx₂ to its open morphology and the increased solvation is possible because of the oxygen-containing propylenedioxythiophene backbone. Finally, the performance of PProDOT-Hx₂ as a conductive binder for the well-known cathode LiNi_(0.8)Co_(0.15)Al_(0.05)O₂ relative to PVDF is presented. PProDOT-Hx₂-based cells display a fivefold increase in capacity at high rates of discharge compared to PVDF-based electrodes at high rates and also show improved long-term cycling stability. The increased rate capability and cycling stability demonstrate the benefits of using binders such as PProDOT-Hx₂, which show good electronic and ionic conductivity, combined with electrochemical stability over the potential range for standard cathode operation

    Machine learning force fields for molecular liquids: Ethylene Carbonate/Ethyl Methyl Carbonate binary solvent

    No full text
    Abstract Highly accurate ab initio molecular dynamics (MD) methods are the gold standard for studying molecular mechanisms in the condensed phase, however, they are too expensive to capture many key properties that converge slowly with respect to simulation length and time scales. Machine learning (ML) approaches which reach the accuracy of ab initio simulation, and which are, at the same time, sufficiently affordable hold the key to bridging this gap. In this work we present a robust ML potential for the EC:EMC binary solvent, a key component of liquid electrolytes in rechargeable Li-ion batteries. We identify the necessary ingredients needed to successfully model this liquid mixture of organic molecules. In particular, we address the challenge posed by the separation of scale between intra- and inter-molecular interactions, which is a general issue in all condensed phase molecular systems
    corecore