60 research outputs found

    Measuring the orbital angular momentum spectrum of an electron beam

    Get PDF
    Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material’s structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron’s OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy

    EFFECT OF ANNEALING TEMPERATURE ON THE OPTICAL AND STRUCTURAL PROPERTIES OF DIP-COATED Al2O3 THIN FILMS PREPARED BY SOL–GEL ROUTE

    No full text
    Thin films of Al2O3 were prepared by the sol–gel process. Dip-coating technique was used for deposition of the Al2O3 thin films onto glass substrates. Optical and structural properties of the films were investigated with respect to the annealing temperature (100–500°C). The structure of these films was determined by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was performed for the analysis of surface morphology. For determination of the optical constants of Al2O3 thin films, UV-Visible spectrophotometry measurements were carried out. Annealing temperature affects the structural and optical properties of the Al2O3 thin films. The refractive index and extinction coefficient of the films at 550 nm wavelength increase from 1.56 to 1.66, and from 3.41 × 10-5 to 5.54 × 10-5, respectively while optical band gap and thickness of the films decrease from 4.15 eV to 4.11 eV, and 360 nm to 260 nm, respectively, by increasing annealing temperature from 100°C to 500°C.Aluminum oxide, sol–gel, thin films, optical constants

    Silicon metasurfaces with tunable electromagnetic resonances for nonlinear optical conversion

    No full text
    Dielectric metasurfaces sustain electromagnetic modes which can be exploited to enhance nonlinear frequency-conversion processes such as thirdharmonic generation. In this work we employ electron-beam lithography to fabricate silicon metasurfaces supporting electromagnetic resonances with different quality factors (Q), ruled by the geometry. This allows to investigate the trade-off between resonant enhancement and matching the spectral bandwidth of the ultrafast excitation source. Both experiments and simulations indicate that higher values of Q do not a priori bring about a stronger third-harmonic generation, which correlates to the spectral overlap between the metasurface resonance and the pump bandwidth

    Two novel genomospecies in the Agrobacterium tumefaciens species complex associated with rose crown gall

    No full text
    In this study, we explored the pathogenicity and phylogenetic position of Agrobacterium spp. strains isolated from crown gall tissues on annual, perennial, and ornamental plants in Iran. Of the 43 strains studied, 10 strains were identified as Allorhizobium vitis (formerly Agrobacterium vitis) using the species-specific primer pair PGF/PGR. Thirty-three remaining strains were studied using multilocus sequence analysis of four housekeeping genes (i.e., atpD, gyrB, recA, and rpoB), from which seven strains were identified as A. larrymoorei and one strain was identified as A. rubi (Rer); the remaining 25 strains were scattered within the A. tumefaciens species complex. Two strains were identified as genomospecies 1 (G1), seven strains were identified as A. radiobacter (G4), seven strains were identified as A. deltaense (G7), two strains were identified as A. nepotum (G14), and one strain was identified as "A. viscosum" (G15). The strains Rnr, Rnw, and Rew as well as the two strains OT33 and R13 all isolated from rose and the strain Ap1 isolated from apple were clustered in three atypical clades within the A. tumefaciens species complex. All but eight strains (i.e., Nec10, Ph38, Ph49, fic9, Fic72, R13, OT33, and Ap1) were pathogenic on tomato and sunflower seedlings in greenhouse conditions, whereas all but three strains (i.e., fic9, Fic72, and OT33) showed tumorigenicity on carrot root discs. The phylogenetic analysis and nucleotide diversity statistics suggested the existence of two novel genomospecies within the A. tumefaciens species complex, which we named "G19" and "G20." Hence, we propose the strains Rew, Rnw, and Rnr as the members of "G19" and the strains R13 and OT33 as the members of G20, whereas the phylogenetic status of the atypical strain Ap1 remains undetermined

    Silicon metasurfaces with tunable electromagnetic resonances for nonlinear optical conversion

    Get PDF
    Dielectric metasurfaces sustain electromagnetic modes which can be exploited to enhance nonlinear frequency-conversion processes such as third-harmonic generation. In this work we employ electron-beam lithography to fabricate silicon metasurfaces supporting electromagnetic resonances with different quality factors (Q), ruled by the geometry. This allows to investigate the trade-off between resonant enhancement and matching the spectral bandwidth of the ultrafast excitation source. Both experiments and simulations indicate that higher values of Q do not a priori bring about a stronger third-harmonic generation, which correlates to the spectral overlap between the metasurface resonance and the pump bandwidth

    Engineering of the spin on dopant process on silicon on insulator substrate

    Get PDF
    We report on a systematic analysis of phosphorus diffusion in silicon on insulator thin film via spin-on-dopant process (SOD). This method is used to provide an impurity source for semiconductor junction fabrication. The dopant is first spread into the substrate via SOD and then diffused by a rapid thermal annealing process. The dopant concentration and electron mobility were characterized at room and low temperature by four-probe and Hall bar electrical measurements. Time-of-flight-secondary ion mass spectroscopy was performed to estimate the diffusion profile of phosphorus for different annealing treatments. We find that a high phosphorous concentration (greater than 1020 atoms cm-3) with a limited diffusion of other chemical species and allowing to tune the electrical properties via annealing at high temperature for short time. The ease of implementation of the process, the low cost of the technique, the possibility to dope selectively and the uniform doping manufactured with statistical process control show that the methodology applied is very promising as an alternative to the conventional doping methods for the implementation of optoelectronic devices

    Tailoring Third-Harmonic Diffraction Efficiency by Hybrid Modes in High-Q Metasurfaces

    Get PDF
    Metasurfaces are versatile tools for manipulating light; however, they have received little attention as devices for the efficient control of nonlinearly diffracted light. Here, we demonstrate nonlinear wavefront control through third-harmonic generation (THG) beaming into diffraction orders with efficiency tuned by excitation of hybrid Mie–quasi-bound states in the continuum (BIC) modes in a silicon metasurface. Simultaneous excitation of the high-Q collective Mie-type modes and quasi-BIC modes leads to their hybridization and results in a local electric field redistribution. We probe the hybrid mode by measuring far-field patterns of THG and observe the strong switching between (0,–1) and (−1,0) THG diffraction orders from 1:6 for off-resonant excitation to 129:1 for the hybrid mode excitation, showing tremendous contrast in controlling the nonlinear diffraction patterns. Our results pave the way to the realization of metasurfaces for novel light sources, telecommunications, and quantum photonics

    Linear and nonlinear optical properties of dewetted SiGe islands

    Get PDF
    We propose to exploit the natural mechanical instability of thin solid films to form regular patterns of monocrystalline atomically smooth silicon and germanium nanostructures that cannot be realized with conventional methods. The solid-state dewetting dynamics is guided by pre-patterning the sample by a combination of electron-beam lithography and reactive-ion etching, obtaining precise control over number, size, shape, and relative position of the final Si1-xGex structures. Here we describe our progress in the spectroscopic investigation of individual dewetted Si1-xGex nanoislands: in the linear regime, bright Mie-type localized resonances are detected in the visible spectral range, with a spectral position that can be tuned by modifying the size of the nanoparticles. In the non-linear regime, instead, sizable third-harmonic generation is observed at the level of single islands. We believe that these results will be pivotal to a novel approach in spectral filtering, sensing and structural color with all-dielectric photonic devices
    • …
    corecore