64 research outputs found

    Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires <it>de novo </it>peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete <it>Plasmopara halstedii</it>, we first evaluated the performance of three different <it>de novo </it>peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i).</p> <p>Results</p> <p>The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set.</p> <p>All three <it>de </it>novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of <it>P. halstedii</it>. We found ten <it>de novo </it>sequenced peptides that showed homology to a <it>Phytophthora infestans </it>protein, a closely related organism of <it>P. halstedii</it>. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase.</p> <p>Conclusions</p> <p>Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different <it>de novo </it>peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in <it>P. halstedii</it>.</p

    Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20°C) mainly affects protein metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature affects essentially every aspect of the biology of poikilothermic animals including the energy and mass budgets, activity, growth, and reproduction. While thermal effects in ecologically important groups such as daphnids have been intensively studied at the ecosystem level and at least partly at the organismic level, much less is known about the molecular mechanisms underlying the acclimation to different temperatures. By using 2D gel electrophoresis and mass spectrometry, the present study identified the major elements of the temperature-induced subset of the proteome from differently acclimated <it>Daphnia pulex</it>.</p> <p>Results</p> <p>Specific sets of proteins were found to be differentially expressed in 10°C or 20°C acclimated <it>D. pulex</it>. Most cold-repressed proteins comprised secretory enzymes which are involved in protein digestion (trypsins, chymotrypsins, astacin, carboxypeptidases). The cold-induced sets of proteins included several vitellogenin and actin isoforms (cytoplasmic and muscle-specific), and an AAA+ ATPase. Carbohydrate-modifying enzymes were constitutively expressed or down-regulated in the cold.</p> <p>Conclusion</p> <p>Specific sets of cold-repressed and cold-induced proteins in <it>D. pulex </it>can be related to changes in the cellular demand for amino acids or to the compensatory control of physiological processes. The increase of proteolytic enzyme concentration and the decrease of vitellogenin, actin and total protein concentration between 10°C and 20°C acclimated animals reflect the increased amino-acids demand and the reduced protein reserves in the animal's body. Conversely, the increase of actin concentration in cold-acclimated animals may contribute to a compensatory mechanism which ensures the relative constancy of muscular performance. The sheer number of peptidase genes (serine-peptidase-like: > 200, astacin-like: 36, carboxypeptidase-like: 30) in the <it>D. pulex </it>genome suggests large-scaled gene family expansions that might reflect specific adaptations to the lifestyle of a planktonic filter feeder in a highly variable aquatic environment.</p

    Independent S-Locus Mutations Caused Self-Fertility in Arabidopsis thaliana

    Get PDF
    A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor kinase (SRK) and its S-locus cysteine-rich ligand (SCR). Transformation of A. thaliana, with a functional AlSRKb-SCRb gene pair from its outcrossing relative A. lyrata, demonstrated that A. thaliana accessions harbor different sets of cryptic self-fertility–promoting mutations, not only in S-locus genes, but also in other loci required for self-incompatibility. However, it is still not known how many times and in what manner the switch to self-fertility occurred in the A. thaliana lineage. Here, we report on our identification of four accessions that are reverted to full self-incompatibility by transformation with AlSRKb-SCRb, bringing to five the number of accessions in which self-fertility is due to, and was likely caused by, S-locus inactivation. Analysis of S-haplotype organization reveals that inter-haplotypic recombination events, rearrangements, and deletions have restructured the S locus and its genes in these accessions. We also perform a Quantitative Trait Loci (QTL) analysis to identify modifier loci associated with self-fertility in the Col-0 reference accession, which cannot be reverted to full self-incompatibility. Our results indicate that the transition to inbreeding occurred by at least two, and possibly more, independent S-locus mutations, and identify a novel unstable modifier locus that contributes to self-fertility in Col-0

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19

    An Interaction Network of RNA-Binding Proteins Involved inDrosophilaOogenesis

    No full text
    During Drosophila oogenesis, the localization and translational regulation of maternal transcripts relies on RNA-binding proteins (RBPs). Many of these RBPs localize several mRNAs and may have additional direct interaction partners to regulate their functions. Using immunoprecipitation from whole Drosophila ovaries coupled to mass spectrometry, we examined protein-protein associations of 6 GFP-tagged RBPs expressed at physiological levels. Analysis of the interaction network and further validation in human cells allowed us to identify 26 previously unknown associations, besides recovering several well characterized interactions. We identified interactions between RBPs and several splicing factors, providing links between nuclear and cytoplasmic events of mRNA regulation. Additionally, components of the translational and RNA decay machineries were selectively co-purified with some baits, suggesting a mechanism for how RBPs may regulate maternal transcripts. Given the evolutionary conservation of the studied RBPs, the interaction network presented here provides the foundation for future functional and structural studies of mRNA localization across metazoans
    corecore