582 research outputs found

    Relationships Between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs

    Get PDF
    Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion events or "hops''. This assumption leads to well-known Arrhenius expressions for transport coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion-hopping with corresponding Poisson distributions to test the assumption of independent hopping in these common structure-types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical significance of the parameters differs from that commonly assumed. In low temperature B3 and B4 diffusion is characterised by concerted motion of multiple ions in short closed loops. Diffusion coefficients can not be expressed in a simple Arrhenius form dependent on single-ion free-energies, and intrinsic diffusion must be considered a many-body process

    Molecular Dynamics Simulation of Coherent Interfaces in Fluorite Heterostructures

    Get PDF
    The standard model of enhanced ionic conductivities in solid electrolyte heterostructures follows from a continuum mean-field description of defect distributions that makes no reference to crystalline structure. To examine ionic transport and defect distributions while explicitly accounting for ion-ion correlations and lattice effects, we have performed molecular dynamics simulations of a model coherent fluorite heterostructure without any extrinsic defects, with a difference in standard chemical potentials of mobile fluoride ions between phases induced by an external potential. Increasing the offset in fluoride ion standard chemical potentials across the internal interfaces decreases the activation energies for ionic conductivity and diffusion and strongly enhances fluoride ion mobilities and defect concentrations near the heterostructure interfaces. Non-charge-neutral "space-charge" regions, however, extend only a few atomic spacings from the interface, suggesting a continuum model may be inappropriate. Defect distributions are qualitatively inconsistent with the predictions of the continuum mean-field model, and indicate strong lattice-mediated defect-defect interactions. We identify an atomic-scale "Frenkel polarisation" mechanism for the interfacial enhancement in ionic mobility, where preferentially oriented associated Frenkel pairs form at the interface and promote local ion mobility via concerted diffusion processes

    Effect of dispersion interactions on the properties of LiF in condensed phases

    Full text link
    Classical molecular dynamics simulations are performed on LiF in the framework of the polarizable ion model. The overlap-repulsion and polarization terms of the interaction potential are derived on a purely non empirical, first-principles basis. For the dispersion, three cases are considered: a first one in which the dispersion parameters are set to zero and two others in which they are included, with different parameterizations. Various thermodynamic, structural and dynamic properties are calculated for the solid and liquid phases. The melting temperature is also obtained by direct coexistence simulations of the liquid and solid phases. Dispersion interactions appear to have an important effect on the density of both phases and on the melting point, although the liquid properties are not affected when simulations are performed in the NVT ensemble at the experimental density.Comment: 8 pages, 5 figure

    Vacancy ordering effects on the conductivity of yttria- and scandia-doped zirconia

    Full text link
    Polarizable interaction potentials, parametrized using ab initio electronic structure calculations, have been used in molecular dynamics simulations to study the conduction mechanism in Y2 O3 - and Sc2 O3 -doped zirconias. The influence of vacancy-vacancy and vacancy-cation interactions on the conductivity of these materials has been characterised. While the latter can be avoided by using dopant cations with radii which match those of Zr4+ (as is the case of Sc3+), the former is an intrinsic characteristic of the fluorite lattice which cannot be avoided and which is shown to be responsible for the occurrence of a maximum in the conductivity at dopant concentrations between 8 and 13 %. The weakness of the Sc-vacancy interactions in Sc2 O3 -doped zirconia suggests that this material is likely to present the highest conductivity achievable in zirconias.Comment: 17 pages, 6 figur

    Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Full text link
    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this adlayer dynamic heterogeneity responds asymmetrically to applied voltage.Comment: 6 page, 4 figure

    Comment on "A centroid molecular dynamics study of liquid para hydrogen and ortho deuterium" [J. Chem. Phys. 121, 6412 (2004)]

    Get PDF
    We show that the two phase points considered in the recent simulations of liquid para hydrogen by Hone and Voth lie in the liquid-vapor coexistence region of a purely classical molecular dynamics simulation. By contrast, their phase point for ortho deuterium was in the one-phase liquid region for both classical and quantum simulations. These observations are used to account for their report that quantum mechanical effects enhance the diffusion in liquid para hydrogen and decrease it in ortho deuterium

    Water exchange at a hydrated platinum electrode is rare and collective

    Get PDF
    We use molecular dynamics simulations to study the exchange kinetics of water molecules at a model metal electrode surface -- exchange between water molecules in the bulk liquid and water molecules bound to the metal. This process is a rare event, with a mean residence time of a bound water of about 40 ns for the model we consider. With analysis borrowed from the techniques of rare-event sampling, we show how this exchange or desorption is controlled by (1) reorganization of the hydrogen bond network within the adlayer of bound water molecules, and by (2) interfacial density fluctuations of the bulk liquid adjacent to the adlayer. We define collective coordinates that describe the desorption mechanism. Spatial and temporal correlations associated with a single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure

    Charge fluctuations in nano-scale capacitors

    Full text link
    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers in particular an efficient, accurate and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes, and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid
    corecore