70 research outputs found

    The Origin and Significance of Reverse Zoning in Melilite from Allende Type B Inclusions

    Get PDF
    In many Type B Allende inclusions, melilite is reversely-zoned over restricted portions of each crystal. Textural relationships and the results of dynamic crystallization experiments suggest that the reverselyzoned intervals in these Type melilites result from the co-precipitation of melilite with clinopyroxene from a melt, prior to the onset of anorthite precipitation. When clinopyroxene begins to precipitate, the Al/Mg ratio of the melt rises, causing the crystallizing melilite to become more gehlenitic, an effect which is negated by crystallization of anorthite. Because the equilibrium crystallization sequence in these liquids is anorthite before pyroxene, melilite reverse zoning can occur only when anorthite nucleation is suppressed relative to pyroxene. This has been achieved in our experiments at cooling rates as low as 0.5°C/hour. Our experiments further indicate, however, that reverse zoning does not form at cooling rates ≄50°C/hour , probably because the clinopyroxene becomes too Al-rich to drive up the Al/Mg ratio of the liquid. Type inclusions with reversely-zoned melilites must have cooled at rates greater than those at which anorthite begins to crystallize before clinopyroxene but <50°C/hour. Such rates are far too slow for the Type droplets to have cooled by radiation into a nebular gas but are much faster than the cooling rate of the solar nebula itself. One possibility is that Type B's formed in local hot regions within the nebula, where their cooling rate was equal to that of their surrounding gas. Other possibilities are that their cooling rates reflect their movement along nebular temperature gradients or the influence of a heat source. The sun or viscous drag on inclusions as they moved through the nebular gas are potential candidates for such heat sources

    Scanning Electron Microscopy of Chondritic Meteorites: Evidence for Condensation and Aggregation Processes During the Birth of the Solar System

    Get PDF
    Carbonaceous chondrite meteorites preserve evidence of how the solar system formed and evolved through its earliest stages. Extracting these clues from small and very fine grained (a few tens of ÎŒm and smaller in many cases) meteorite components has required extensive use of micro beam techniques-scanning electron microscopy (SEM), electron and ion microprobe. Correlated studies have allowed textural, major and trace element and isotopic data to be gathered on the same precious microsamples. The best method for examining textures in these meteorites is scanning electron microscopy of flat polished sections using compositional back-scattered electron imaging

    Planetary geosciences, 1989-1990

    Get PDF
    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs

    Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites

    Get PDF
    In order to investigate the distribution of ^(26)A1 in chondrites, we measured aluminum-magnesium systematics in four calcium-aluminum-rich inclusions (CAIs) and eleven aluminum-rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic ^(26)Mg (^(26)Mg^*) from the decay of ^(26)A1. The inferred initial ^(26)Al/^(27)Al ratios for these objects ((^(26)Al/^(27)Al)_0 ≅ 5 × 10^(−5)) are indistinguishable from the (^(26)Al/^(27)Al)_0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found ^(26)Mg^* in two of eleven aluminum-rich chondrules. The (^(26)Al/^(27)Al)_0 ratio inferred for both of these chondrules is ∌1 × 10^(−5), clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum-rich chondrules from lightly metamorphosed carbonaceous chondrites (∌0.5 × 10^(−5) to ∌2 × 10^(−5)). The consistency of the (^(26)Al/^(27)Al)_0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad-scale nebular homogeneity with respect to ^(26)Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on ^(26)Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with ^(26)Al as a principal heat source for melting and metamorphism
    • 

    corecore