2,311 research outputs found
AEM of extraterrestrial materials
Modifications to and maintenance of the JEOL 100 CX electron microscope are discussed. Research activity involving extraterrestrial matter, cosmic dust, stratosphere dust, and meteorites is summarized
Devolution as process: institutional structures, state personnel and transport policy in the United Kingdom
Devolution has been described as a key ‘global trend’ over recent decades as governments have decentralised power and responsibilities to subordinate regional institutions (Rodriguez-Pose and Gill, 2003). UK devolution is characterised by its asymmetrical nature with different territories granted different institutional arrangements and powers. In this paper, we seek examine the role of state personnel in mobilising the new institutional machinery and managing the process of devolution, focusing on transport policy. Our research shows a clear contrast between London and Northern Ireland, on the one hand, and Scotland and Wales, on the other, in terms of the effectiveness of political leaders in creating clear policy priorities and momentum in transport
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
We study the non-thermal emissions in a solar flare occurring on 2003 May 29
by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This
flare shows several typical behaviors of the HXR and microwave emissions: time
delay of microwave peaks relative to HXR peaks, loop-top microwave and
footpoint HXR sources, and a harder electron energy distribution inferred from
the microwave spectrum than from the HXR spectrum. In addition, we found that
the time profile of the spectral index of the higher-energy (\gsim 100 keV)
HXRs is similar to that of the microwaves, and is delayed from that of the
lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms
of an electron transport model called {\TPP}. We numerically solved the
spatially-homogeneous {\FP} equation to determine electron evolution in energy
and pitch-angle space. By comparing the behaviors of the HXR and microwave
emissions predicted by the model with the observations, we discuss the
pitch-angle distribution of the electrons injected into the flare site. We
found that the observed spectral variations can qualitatively be explained if
the injected electrons have a pitch-angle distribution concentrated
perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical
Journa
Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry
Published: 12 June 2017Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.Andrew J. Spargo, Iain M. Reid, Andrew D. MacKinnon, and David A. Holdswort
Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization
In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling
theory of electron localization was proposed. We show that numerical data for
the quasi-one dimensional Anderson model do not support predictions of this
theory.Comment: Comment on the paper arXiv 1104.043
Finite-size scaling from self-consistent theory of localization
Accepting validity of self-consistent theory of localization by Vollhardt and
Woelfle, we derive the finite-size scaling procedure used for studies of the
critical behavior in d-dimensional case and based on the use of auxiliary
quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good
agreement with numerical results: it signifies the absence of essential
contradictions with the Vollhardt and Woelfle theory on the level of raw data.
The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of
the correlation length, are explained by the fact that dependence L+L_0 with
L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu}
with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived;
it demonstrates incorrectness of the conventional treatment of data for d=4 and
d=5, but establishes the constructive procedure for such a treatment.
Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with
high precision data by Kramer et a
Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?
An analytical realization is suggested for the finite-size scaling algorithm
based on the consideration of auxiliary quasi-1D systems. Comparison of the
obtained analytical results with the results of numerical calculations
indicates that the Anderson transition point is splitted into the band of
critical states. This conclusion is supported by direct numerical evidence
(Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990).
The possibility of restoring the conventional picture still exists but requires
a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page
Scaling in the one-dimensional Anderson localization problem in the region of fluctuation states
We numerically study the distribution function of the conductivity
(transmission) in the one-dimensional tight-binding Anderson model in the
region of fluctuation states. We show that while single parameter scaling in
this region is not valid, the distribution can still be described within a
scaling approach based upon the ratio of two fundamental quantities, the
localization length, , and a new length, , related to the
integral density of states. In an intermediate interval of the system's length
, , the variance of the Lyapunov exponent does not
follow the predictions of the central limit theorem, and may even grow with
.Comment: Phys. Rev. Lett 90, 126601 (2003) 4 pages, 3 figure
- …