157 research outputs found

    Плейотропный нейропротективный и метаболический эффекты актовегина

    Get PDF
    В обзоре рассматриваются механизмы действия актовегина в контексте изучения его эффектов на доклиническом уровне и новой концепции фармакологического лечения неврологических расстройств. Актовегин, получаемый при ультрафильтрации крови телят, состоит из более чем 200 биологических субстанций. Препарат используется при широком спектре заболеваний, включая нарушения периферического и мозгового кровообращения, ожоги, плохое заживление ран, радиационные поражения и диабетическую полинейропатию. Актовегин состоит из молекул малого размера, которые находятся в организме в нормальных физиологических условиях, и поэтому исследования их фармакокинетики и фармакодинамики для определения активной субстанции препарата затруднены. Результаты преклинических исследований показали, что актовегин улучшает метаболический баланс путем повышения усвоения глюкозы и потребление кислорода в условиях ишемии. Актовегин также повышает устойчивость к гамма-радиации и стимулирует ранозаживление. В более поздних работах было установлено, что антиоксидантный и антиапоптотический механизмы действия лежат в основе нейропротективных свойств актовегина, подтвержденных в экспериментах на первичных нейронах гиппокампа крыс и стрептозотоцининдуцированной модели диабетической полинейропатии у крыс. Последние данные свидетельствуют о положительном влиянии актовегина на фактор NF-κB, но при этом многие молекулярные и клеточные механизмы его действия остаются неизвестными. В первую очередь это касается влияния актовегина на нейропластичность, нейрогенез и трофическую функцию нервной системы, и данный аспект требует дальнейших исследований. Тем не менее становится очевидным, что мультифакториальная и многокомпонентная природа актовегина определяет его плейотропный нейропротективный механизм действия и клиническую эффективность

    The Myocyte Expression of Adiponectin Receptors and PPARδ Is Highly Coordinated and Reflects Lipid Metabolism of the Human Donors

    Get PDF
    Muscle lipid oxidation is stimulated by peroxisome proliferator-activated receptor (PPAR) δ or adiponectin receptor signalling. We studied human myocyte expression of the PPARδ and adiponectin receptor genes and their relationship to lipid parameters of the donors. The mRNA levels of the three adiponectin receptors, AdipoR1, AdipoR2, and T-cadherin, were highly interrelated (r ≥ 0.91). However, they were not associated with GPBAR1, an unrelated membrane receptor. In addition, the adiponectin receptors were positively associated with PPARδ expression (r ≥ 0.75). However, they were not associated with PPARα. Using stepwise multiple linear regression analysis, PPARδ was a significant determinant of T-cadherin (P = .0002). However, pharmacological PPARδ activation did not increase T-cadherin expression. The myocyte expression levels of AdipoR1 and T-cadherin were inversely associated with the donors' fasting plasma triglycerides (P < .03). In conclusion, myocyte expression of PPARδ and the adiponectin receptors are highly coordinated, and this might be of relevance for human lipid metabolism in vivo

    No association between variation in the NR4A1 gene locus and metabolic traits in white subjects at increased risk for type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear receptor NR4A1 is implicated in metabolic regulation in insulin-sensitive tissues, such as liver, adipose tissue, and skeletal muscle. Functional loss of NR4A1 results in insulin resistance and enhanced intramuscular and hepatic lipid content. Therefore, we investigated in a cohort of white European subjects at increased risk for type 2 diabetes whether genetic variation within the <it>NR4A1 </it>gene locus contributes to prediabetic phenotypes, such as insulin resistance, ectopic fat distribution, or β-cell dysfunction.</p> <p>Methods</p> <p>We genotyped 1495 subjects (989 women, 506 men) for five single nucleotide polymorphisms (SNPs) tagging 100% of common variants (MAF = 0.05) within the <it>NR4A1 </it>gene locus with an r<sup>2 </sup>= 0.8. All subjects underwent an oral glucose tolerance test (OGTT), a subset additionally had a hyperinsulinemic-euglycemic clamp (n = 506). Ectopic hepatic (n = 296) and intramyocellular (n = 264) lipids were determined by magnetic resonance spectroscopy. Peak aerobic capacity, a surrogate parameter for oxidative capacity of skeletal muscle, was measured by an incremental exercise test on a motorized treadmill (n = 270).</p> <p>Results</p> <p>After appropriate adjustment and Bonferroni correction for multiple comparisons, none of the five SNPs was reliably associated with insulin sensitivity, ectopic fat distribution, peak aerobic capacity, or indices of insulin secretion (all p ≥ 0.05).</p> <p>Conclusions</p> <p>Our data suggest that common genetic variation within the <it>NR4A1 </it>gene locus may not play a major role in the development of prediabetic phenotypes in our white European population.</p

    An Obesity Risk SNP (rs17782313) near the MC4R Gene Is Associated with Cerebrocortical Insulin Resistance in Humans

    Get PDF
    Activation of melanocortin-4 receptor (MC4R) by insulin sensitive neurons is a central mechanism in body weight regulation, and genetic variants in the MC4R gene (e.g., rs17782313) are associated with obesity. By using magnetoencephalography, we addressed whether rs17782313 affects the cerebrocortical insulin response. We measured the cerebrocortical insulin response by using magnetoencephalography in a hyperinsulinemic euglycemic clamp (versus placebo) in 51 nondiabetic humans (26 f/25 m, age 35 ± 3 years, BMI 28 ± 1 kg/m2). The C-allele of rs17782313 was minor allele (frequency 23%), and the genotype distribution (TT 30, TC 19, CC 2) was in Hardy-Weinberg-Equilibrium. Insulin-stimulated cerebrocortical theta activity was decreased in the presence of the C-allele (TT 33 ± 16 fT; TC/CC −27 ± 20 fT; P = .023), and this effect remained significant after adjusting for BMI and peripheral insulin sensitivity (P = .047). Cerebrocortical theta activity was impaired in carriers of the obesity risk allele. Therefore, cerebral insulin resistance may contribute to the obesity effect of rs17782313

    Polymorphisms within Novel Risk Loci for Type 2 Diabetes Determine β-Cell Function

    Get PDF
    BACKGROUND: Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or beta-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity) with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761) were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or beta-cell dysfunction were not assessed. METHODOLOGY/PRINCIPAL FINDINGS: By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs), we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or beta-cell dysfunction, respectively. CONCLUSIONS/SIGNIFICANCE: The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells towards adverse environmental factors

    Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prohormone convertase 1 is involved in maturation of peptides. Rare mutations in gene <it>PCSK1</it>, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, β-cell dysfunction, or glucose intolerance.</p> <p>Methods</p> <p>We genotyped 1498 German subjects for SNPs rs6232 and rs6235 within <it>PCSK1</it>. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp.</p> <p>Results</p> <p>The minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p ≥ 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUC<sub>proinsulin </sub>and AUC<sub>proinsulin</sub>/AUC<sub>insulin </sub>(rs6235: p<sub>additive model </sub>≤ 0.009, effect sizes 8/8%, rs6232: p<sub>dominant model </sub>≤ 0.01, effect sizes 10/21%). Insulin secretion was not affected by the variants (different secretion parameters, all p ≥ 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (p<sub>dom </sub>≤ 0.0047), 4.5% lower HOMA<sub>IR </sub>(p<sub>dom </sub>= 0.02) and 3.5% lower 120-min glucose (p<sub>dom </sub>= 0.0003) independently of BMI and proinsulin conversion. SNP rs6235 was not associated with parameters of glucose metabolism.</p> <p>Conclusions</p> <p>Like rare mutations in <it>PCSK1</it>, the more common variants tested determine glucose-stimulated proinsulin conversion, but not insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis.</p

    Common Genetic Variation in the SERPINF1 Locus Determines Overall Adiposity, Obesity-Related Insulin Resistance, and Circulating Leptin Levels

    Get PDF
    OBJECTIVE: Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. SUBJECTS/METHODS: A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements) and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05) in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI) and spectroscopy (MRS). RESULTS: After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094) and fasting leptin concentrations (p = 0.0035) as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182) and clamp-derived insulin sensitivity (p = 0.0251). The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8). Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436), and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all). CONCLUSION: In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity, obesity-related insulin resistance, and circulating leptin levels

    Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity

    Get PDF
    Variations in FTO are the strongest common genetic determinants of adiposity, and may partly act by influencing dopaminergic signalling in the brain leading to altered reward processing that promotes increased food intake. Therefore, we investigated the impact of such an interaction on body composition, and peripheral and brain insulin sensitivity. Participants from the Tubingen Family study (n = 2245) and the Malmo Diet and Cancer study (n = 2921) were genotyped for FTO SNP rs8050136 and ANKK1 SNP rs1800497. Insulin sensitivity in the caudate nucleus, an important reward area in the brain, was assessed by fMRI in 45 participants combined with intranasal insulin administration. We found evidence of an interaction between variations in FTO and an ANKK1 polymorphism that associates with dopamine (D2) receptor density. In cases of reduced D2 receptor availability, as indicated by the ANKK1 polymorphism, FTO variation was associated with increased body fat and waist circumference and reduced peripheral insulin sensitivity. Similarly, altered central insulin sensitivity was observed in the caudate nucleus in individuals with the FTO obesity-risk allele and diminished D2 receptors. The effects of variations in FTO are dependent on dopamine D2 receptor density (determined by the ANKK1 polymorphism). Carriers of both risk alleles might, therefore, be at increased risk of obesity and diabetes.Peer reviewe
    corecore