98 research outputs found

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between \sim 10 ^{\circ} and \sim 30 ^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195195^{\circ}\leq R.A. 315\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

    Get PDF
    Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind

    Highlights from the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined

    Measurement of the antiproton/proton ratio in the few-TeV energy range with ARGO-YBJ

    Full text link
    Cosmic ray antiprotons provide an important probe for the study of cosmic ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment is observing the Moon shadow with high statistical significance at an energy threshold of a few hundred GeV. Using all the data collected until November 2009, we set two upper limits on the antip/p flux ratio: 5% at an energy of 1.4 TeV and 6% at 5 TeV with a confidence level of 90%. In the few-TeV range the ARGO-YBJ results are the lowest available, useful to constrain models for antiproton production in antimatter domains.Comment: Talk given at the CRIS 2010 Conference, September 2010, Catania - Italy, 6 page

    Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling

    Get PDF
    The authors are grateful to the Arabidopsis Biological Resource Center for providing the T-DNA insertion lines discussed in this work. We thank Dr. Yanhai Yin (Iowa State University) for providing anti-BES1 antibody, Dr. Jiayang Li (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for bri1-301 seeds, and Dr. Xing-wang Deng (Yale University) for cop1-4 and cop1-6 seeds as controls.Author Summary Brassinosteroids (BRs) are a group of plant hormones critical for plant growth and development. BRs are perceived by a cell-surface receptor complex including two distinctive receptor kinases, BRI1 and BAK1. Whereas BRI1 is a true BR-binding receptor, BAK1 does not appear to have BR-binding activity. Therefore, BAK1 is likely a co-receptor in BR signal transduction. The genetic significance of BAK1 was not clearly demonstrated in previous studies largely due to functional redundancy of BAK1 and its closely related homologues. It was not clear whether BAK1 plays an essential role or only an enhancing role in BR signaling. In this study, we identified all possible BAK1 redundant genes in the Arabidopsis thaliana genome and generated single, double, triple, and quadruple mutants. Detailed analysis indicated that, without BAK1 and its functionally redundant proteins, BR signaling is completely disrupted, largely because BRI1 has lost its ability to activate downstream components. These studies provide the first piece of loss-of-functional genetic evidence that BAK1 is indispensable to the early events of the BR signaling pathway.Yeshttp://www.plosgenetics.org/static/editorial#pee

    Effects of different cone combinations on accurate and precisedetermination of Li isotopic composition by MC-ICP-MS

    No full text
    The multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) is booming to be a high-precision, fast, and accurate instrument in measuring lithium (Li) isotopes. Modified highly sensitive Jet sample and X skimmer cones have largely upgraded analytical sensitivity and reduced sample consumption with distinct instrumental mass bias behaviors. Herein, four available combinations of the sample and skimmer cones [Jet sample cone + X skimmer cone (Jet + X), Standard sample cone + X skimmer cone (Standard + X), Standard sample cone + H skimmer cone (Standard + H), and Jet sample cone + H skimmer cone (Jet + H)] were tested for their effects on peak shape, sensitivity, mass bias behavior, and accuracy and precision of Li isotopic measurements in solution mode. The results showed that all four combinations were able to attain an ideal peak shape by adjusting the associated parameters, with a positively linear relation between 7Li (and 6Li) signals and Li concentrations. For a given Li concentration, the sensitivities were enhanced 3–7 times using the Standard + X, the Jet + H, and the Jet +X combinations compared to that of using the Standard + H. The enhanced sensitivity is attributable to more plasma ions introduced into the mass spectrometer through the Jet and X cones. Mass bias is distinct for different cone combinations, with a slight difference with various Li concentrations, indicating the neccesity of concentration match during measurement. Among the four cone combinations, the best reproducibility can be obtained by using the Standard + X cones to determine precise and accurate Li isotopes for samples. Furthermore, a pretreatment by 5% HNO3 and 0.1% HF, and then 2% HNO3 prior to analyses can minimize the memory effect of Li
    corecore