1,796 research outputs found

    Stochasticity in halo formation and the excursion set approach

    Get PDF
    The simplest stochastic halo formation models assume that the traceless part of the shear field acts to increase the initial overdensity (or decrease the underdensity) that a protohalo (or protovoid) must have if it is to form by the present time. Equivalently, it is the difference between the overdensity and (the square root of the) shear that must be larger than a threshold value. To estimate the effect this has on halo abundances using the excursion set approach, we must solve for the first crossing distribution of a barrier of constant height by the random walks associated with the difference, which is now (even for Gaussian initial conditions) a non-Gaussian variate. The correlation properties of such non-Gaussian walks are inherited from those of the density and the shear, and, since they are independent processes, the solution is in fact remarkably simple. We show that this provides an easy way to understand why earlier heuristic arguments about the nature of the solution worked so well. In addition to modelling halos and voids, this potentially simplifies models of the abundance and spatial distribution of filaments and sheets in the cosmic web.Comment: 5 pages, 1 figure. Matches published versio

    The excursion set approach in non-Gaussian random fields

    Get PDF
    Insight into a number of interesting questions in cosmology can be obtained from the first crossing distributions of physically motivated barriers by random walks with correlated steps. We write the first crossing distribution as a formal series, ordered by the number of times a walk upcrosses the barrier. Since the fraction of walks with many upcrossings is negligible if the walk has not taken many steps, the leading order term in this series is the most relevant for understanding the massive objects of most interest in cosmology. This first term only requires knowledge of the bivariate distribution of the walk height and slope, and provides an excellent approximation to the first crossing distribution for all barriers and smoothing filters of current interest. We show that this simplicity survives when extending the approach to the case of non-Gaussian random fields. For non-Gaussian fields which are obtained by deterministic transformations of a Gaussian, the first crossing distribution is simply related to that for Gaussian walks crossing a suitably rescaled barrier. Our analysis shows that this is a useful way to think of the generic case as well. Although our study is motivated by the possibility that the primordial fluctuation field was non-Gaussian, our results are general. In particular, they do not assume the non-Gaussianity is small, so they may be viewed as the solution to an excursion set analysis of the late-time, nonlinear fluctuation field rather than the initial one. They are also useful for models in which the barrier height is determined by quantities other than the initial density, since most other physically motivated variables (such as the shear) are usually stochastic and non-Gaussian. We use the Lognormal transformation to illustrate some of our arguments.Comment: 14 pages, new sections and figures describing new results, discussion and references adde

    The importance of stepping up in the excursion set approach

    Full text link
    Recently, we provided a simple but accurate formula which closely approximates the first crossing distribution associated with random walks having correlated steps. The approximation is accurate for the wide range of barrier shapes of current interest and is based on the requirement that, in addition to having the right height, the walk must cross the barrier going upwards. Therefore, it only requires knowledge of the bivariate distribution of the walk height and slope, and is particularly useful for excursion set models of the massive end of the halo mass function. However, it diverges at lower masses. We show how to cure this divergence by using a formulation which requires knowledge of just one other variable. While our analysis is general, we use examples based on Gaussian initial conditions to illustrate our results. Our formulation, which is simple and fast, yields excellent agreement with the considerably more computationally expensive Monte-Carlo solution of the first crossing distribution, for a wide variety of moving barriers, even at very low masses.Comment: 10 pages, 5 figure

    An analysis on health care costs due to accidents involving powered two wheelers to increase road safety

    Get PDF
    Powered Two Wheelers (PTWs) provide a convenient mode for a large portion of population in many cities. At the same time PTWs present serious system problems, the most important being poorer safety if compared to other motorized modes. But even when lower safety levels are acknowledged, problems behind are far from being solved. Rome is an example: although PTWs accidents rates are not negligible, the need for a specific safety policy is still unmet. Therefore the local Mobility Agency appointed the authors of this paper for a study of PTWs accidents occurring in the urban area. An assessment of the associated health care costs was also required. The objective of the paper is to report the main outcomes of this study highlighting recurring features of PTWs accidents, the high health care costs and how to quantify the economic resources to improve safety. The methodology was based on three steps: i) an analysis of the causes of PTWs accidents, which resulted into the location of black spots and assessment of the severity of the events; ii) the estimation of health care costs after a scientific literature review; iii) the association of health care costs to black spots and accidents severity to rank interventions to improve PTWs safety. This led to a final list of roads where PTWs accidents of the highest severity occurred and the required economic resources to improve their safety level. This stressed, for the first time, the unaffordable expenditures due to PTWs accidents. In conclusion, the issue whether the awareness of such costs can be used as leverage for more mindful behaviors among the riders is addressed

    One step beyond: The excursion set approach with correlated steps

    Full text link
    We provide a simple formula that accurately approximates the first crossing distribution of barriers having a wide variety of shapes, by random walks with a wide range of correlations between steps. Special cases of it are useful for estimating halo abundances, evolution, and bias, as well as the nonlinear counts in cells distribution. We discuss how it can be extended to allow for the dependence of the barrier on quantities other than overdensity, to construct an excursion set model for peaks, and to show why assembly and scale dependent bias are generic even at the linear level.Comment: 5 pages, 1 figure. Uses mn2e class styl

    Getting in shape with minimal energy. A variational principle for protohaloes

    Full text link
    In analytical models of structure formation, protohalos are routinely assumed to be peaks of the smoothed initial density field, with the smoothing filter being spherically symmetric. This works reasonably well for identifying a protohalo's center of mass, but not its shape. To provide a more realistic description of protohalo boundaries, one must go beyond the spherical picture. We suggest that this can be done by looking for regions of fixed volume, but arbitrary shape, that minimize the enclosed energy. Such regions are surrounded by surfaces over which (a slightly modified version of) the gravitational potential is constant. We show that these equipotential surfaces provide an excellent description of protohalo shapes, orientations and associated torques.Comment: 5 pages, 6 figure

    Peaks theory and the excursion set approach

    Full text link
    We describe a model of dark matter halo abundances and clustering which combines the two most widely used approaches to this problem: that based on peaks and the other based on excursion sets. Our approach can be thought of as addressing the cloud-in-cloud problem for peaks and/or modifying the excursion set approach so that it averages over a special subset, rather than all possible walks. In this respect, it seeks to account for correlations between steps in the walk as well as correlations between walks. We first show how the excursion set and peaks models can be written in the same formalism, and then use this correspondence to write our combined excursion set peaks model. We then give simple expressions for the mass function and bias, showing that even the linear halo bias factor is predicted to be k-dependent as a consequence of the nonlocality associated with the peak constraint. At large masses, our model has little or no need to rescale the variable delta_c from the value associated with spherical collapse, and suggests a simple explanation for why the linear halo bias factor appears to lie above that based on the peak-background split at high masses when such a rescaling is assumed. Although we have concentrated on peaks, our analysis is more generally applicable to other traditionally single-scale analyses of large-scale structure.Comment: 10 pages, 4 figures; v2 -- minor changes, added discussion in sec2.2, fixed a typo. Accepted in MNRA

    Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions

    Full text link
    A general procedure to get the explicit solution of the equations of motion for N-body classical Hamiltonian systems equipped with coalgebra symmetry is introduced by defining a set of appropriate collective variables which are based on the iterations of the coproduct map on the generators of the algebra. In this way several examples of N-body dynamical systems obtained from q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2) Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of Ruijsenaars type arising from the same (non co-boundary) q-deformation of the (1+1) Poincare' algebra. Also, a unified interpretation of all these systems as different Poisson-Lie dynamics on the same three dimensional solvable Lie group is given.Comment: 19 Latex pages, No figure

    Scale dependent halo bias in the excursion set approach

    Full text link
    If one accounts for correlations between scales, then nonlocal, k-dependent halo bias is part and parcel of the excursion set approach, and hence of halo model predictions for galaxy bias. We present an analysis that distinguishes between a number of different effects, each one of which contributes to scale-dependent bias in real space. We show how to isolate these effects and remove the scale dependence, order by order, by cross-correlating the halo field with suitably transformed versions of the mass field. These transformations may be thought of as simple one-point, two-scale measurements that allow one to estimate quantities which are usually constrained using n-point statistics. As part of our analysis, we present a simple analytic approximation for the first crossing distribution of walks with correlated steps which are constrained to pass through a specified point, and demonstrate its accuracy. Although we concentrate on nonlinear, nonlocal bias with respect to a Gaussian random field, we show how to generalize our analysis to more general fields.Comment: 16 pages, 10 figures; v2 -- minor changes, typos fixed, references added, accepted in MNRA

    Towards uncertainty in dimensional metrology of surface features for advanced manufacturing

    Get PDF
    In previous work, an original approach was developed for the dimensional characterisation of surface features on parts and test artefacts, aimed at supporting researchers involved in the study of advanced manufacturing processes. In the approach, methods and algorithms from image processing, coordinate metrology, surface metrology and reverse engineering are merged into an original framework for feature identification, extraction and dimensional characterisation, starting from areal topography data. With the ultimate goal of associating uncertainty to the results obtained in dimensional characterisation, this paper focuses on specifically investigating reproducibility and repeatability of dimensional characterisation results obtained on a test dataset consisting of a step-like feature manufactured by material jetting
    corecore