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simplicity survives when extending the approach to the case of non-Gaussian
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ABSTRACT

Insight into a number of interesting questions in cosmology can be obtained by
studying the first crossing distributions of physically motivated barriers by random
walks with correlated steps: higher mass objects are associated with walks that cross
the barrier in fewer steps. We write the first crossing distribution as a formal series,
ordered by the number of times a walk upcrosses the barrier. Since the fraction of walks
with many upcrossings is negligible if the walk has not taken many steps, the leading
order term in this series is the most relevant for understanding the massive objects
of most interest in cosmology. For walks associated with Gaussian random fields, this
first term only requires knowledge of the bivariate distribution of the walk height and
slope, and provides an excellent approximation to the first crossing distribution for
all barriers and smoothing filters of current interest. We show that this simplicity
survives when extending the approach to the case of non-Gaussian random fields. For
non-Gaussian fields which are obtained by deterministic transformations of a Gaussian,
the first crossing distribution is simply related to that for Gaussian walks crossing a
suitably rescaled barrier. Our analysis shows that this is a useful way to think of
the generic case as well. Although our study is motivated by the possibility that the
primordial fluctuation field was non-Gaussian, our results are general. In particular,
they do not assume the non-Gaussianity is small, so they may be viewed as the solution
to an excursion set analysis of the late-time, nonlinear fluctuation field rather than the
initial one. They are also useful for models in which the barrier height is determined by
quantities other than the initial density, since most other physically motivated variables
(such as the shear) are usually stochastic and non-Gaussian. We use the Lognormal
transformation to illustrate some of our arguments.

Key words: large-scale structure of Universe

1 INTRODUCTION

The statistical distribution of gravitationally bound objects
in the Universe is a powerful tool for constraining the amount
of primordial non-Gaussianity, thus helping shed some light
on the physics of the very early times. The dependence on
mass of the abundance and spatial correlations of collapsed
objects are useful and complementary tools for probing non-
Gaussianity on different scales, in particular, scales that are
smaller than those accessible with CMB observations.

The excursion set approach (Bond et al. 1991) provides
an analytical framework for linking the statistics of haloes to
fluctuations in the primordial density field. In this approach,
one studies the overdensity field δ smoothed on the scale R,

? E-mail: marcello.musso@uclouvain.be
† E-mail: sheth@ictp.it

δ(x, R) =

∫
dyWR(x− y)δ(y) , (1)

where x and y are spatial coordinates and WR is a filter
that goes to zero for |x − y| � R. At a given (randomly
chosen) position in space the evolution of δR as a function of
(the inverse of) R resembles a random trajectory. Repeating
this for every position in space gives an ensemble of trajec-
tories, each starting from zero (homogeneity demands δ = 0
for infinitely large smoothing scales). For each trajectory,
one looks for the largest R (if any) for which the value of
the smoothed density field lies above some threshold value
(which may itself depend on R). An object of mass M ∼ R3

is then associated with that trajectory.
If dn/dM denotes the comoving number density of

haloes of mass M , then the mass fraction in such halos is
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2 M. Musso, R. K. Sheth

(M/ρ̄) dn/dM , where ρ̄ is the comoving background density.
The excursion set approach assumes that this mass fraction
equals the fraction of walks which cross the threshold (the
“barrier”) for the first time when the smoothing scale is R:

f(R) dR = (M/ρ̄) (dn/dM) dM. (2)

Although recent work has focussed on the shortcomings of
this ansatz (Bond & Myers 1996; Paranjape & Sheth 2012),
the first crossing distribution is nevertheless expected to pro-
vide substantial insight into the dependence of dn/dM on
cosmological parameters. In any case, the question of how
the first crossing distribution depends on the nature of the
underlying fluctuation field is interesting in its own right.

A crucial part of the problem is to avoid double count-
ing trajectories, i.e., to discard at lower scales all trajectories
that have already crossed at larger scales (since they are al-
ready associated with an object of larger mass – given by
the largest scale on which the trajectory crossed the bar-
rier). This is rather straightforward to implement numeri-
cally, but hard to deal with analytically. Indeed, exact solu-
tions are known only for the unrealistic case of walks with
uncorrelated steps (for Gaussian fields, this corresponds to
a smoothing filter that is a sharp step function in Fourier
space) and only for a few specific barriers. Considerable ef-
fort has been devoted to finding satisfactory analytical ap-
proximations, or fitting formulae, for the generic case in
which steps are correlated.

The problem is potentially even harder for non-Gaussian
initial conditions, since different Fourier modes of the field
become coupled, and this introduces additional correlations
between the steps, whatever the smoothing filter. More-
over, the most sizeable non-Gaussian deviations are likely
to be in the (massive object) tail of the distribution. In this
regime, perturbative expansions around the Gaussian result
are likely to blow up, so they must be handled with care
(D’Amico et al. 2011).

In this paper we provide a simple analytic approxima-
tion scheme that works for a broad variety of barriers and
filters, and can be implemented up to an arbitrary precision
level for any (Gaussian or non-Gaussian) distribution of the
underlying matter density field. The general formalism is
presented in Section 2, and explicit calculations are carried
out in Section 3, where we summarize our previous work on
Gaussian fields and show how to extend it to non-Gaussian
fields. Section 4 shows how to use our results when stochastic
(non-Gaussian) variables other than the initial overdensity
determine halo formation, and as the basis of an excursion
set study based on the late-time, nonlinear (rather than ini-
tial) fluctuation field. A final section summarizes our results.
Appendix A discusses how to go beyond the simplest ap-
proximation we present in the main text, and our use of the
Edgeworth and related-expansions for approximating non-
Gaussian distributions is summarized in Appendix B.

2 FIRST CROSSING DISTRIBUTION WITH
CORRELATED STEPS

In hierarchical models, the variance s ≡ 〈 δ2(R) 〉 of the den-
sity field δ when smoothed on scale R vanishes by definition
for R = ∞, and it grows monotonically for smaller R (note

that 〈δ〉 ≡ 0 for any R), according to

s(R) =

∫
dk

k

k3P (k)

2π2
W 2(kR) , (3)

where P (k) is the power spectrum of δ. Therefore, R and s
can be used interchangeably, and it is customary and con-
venient to study the walks as a function of s rather than R,
as this has the advantage of hiding the dependence on the
power spectrum and the smoothing filter. These only appear
when the actual relation between s and R is needed.

What we are after is the first crossing rate, i.e. the prob-
ability that a walk δ crosses for the first time the barrier
b(s) at some scale s. In other words, we want to compute
the probability that δ(s) > b(s) at s but δ(s1) < b(s1) for
all s1 < s, knowing the probability distribution p(δ; s) of
the walk values at any s. In general, requiring δ(s) > b(s)
is straightforward, whereas the additional constraint on the
walk heights for all s1 < s is difficult to treat analytically.

2.1 Height alone

In one of the earliest works on this subject, Press & Schechter
(1974) simply ignored this constraint, and estimated f(s) as

fCC(s) = − d

ds

∫ b(s)

−∞
dδ p(δ; s) . (4)

(The reason for the subscript CC will become clear shortly.)
Strictly speaking, Press & Schechter ended up multiplying
the right hand side of this expression by a factor of 2, and
they only studied the special case in which b is indepen-
dent of s. In their case, b ≡ δc = 1.686 was the threshold
inferred from spherical collapse. The extension to barriers
which decrease monotonically as s increases is trivial; other-
wise one must be a little more careful, as we discuss below.
That this formulation does not impose any constraint on
the walk values at larger scales (smaller s) is a point which
was highlighted by Bond et al. (1991). In fact, it does not
even distinguish between trajectories crossing the threshold
upwards or downwards, a point to which we return shortly.

Recently Paranjape, Lam & Sheth (2012) noted that
there is an interesting and instructive limit in which equa-
tion (4) is exact: the set of smooth deterministic curves hav-
ing δ ∝

√
s. Each of these curves represents what they called

a completely correlated walk, that is a monotonic function
of s whose amplitude is set by a single number, the constant
of proportionality, which one may take to be the height on
scale s = 1. If the distribution of this constant is specified
on one scale (say s = 1) then the distribution of δ on an-
other scale, p(δ; s), is simply related to p(δ; 1), and, for this
family of curves, equation (4) is exact: hence the subscript
CC. This limit is interesting because, regardless of the filter
and the matter power spectrum, all correlated walks tend to
deterministic trajectories with δ ∝

√
s as s → 0. Thus, in

this (large mass) limit, equation (4) is exact, explaining the
numerical results of Bond et al. (1991).

At larger values of s, the completely correlated limit
is no longer so accurate. However, although small fluctua-
tions around these trajectories appear, most walks still re-
main monotonic functions of s. Therefore the contribution
to p(δ; s) from walks criss-crossing the barrier multiple times

c© 0000 RAS, MNRAS 000, 1–14



Excursion sets in non-Gaussian random fields 3

is still negligible, so the constraint δ(s1) < b(s1) for s1 < s
is automatically satisfied.

2.2 Upcrossing requires both height and slope

As s gets larger, one must account for larger and larger fluc-
tuations away from the deterministic trajectories. The most
efficient way of doing so, at fixed height δ on scale s, is to
consider fluctuations in the slope v ≡ dδ/ds (v for velocity)
(Musso & Sheth 2012). (For the ensemble of deterministic
walks, the distribution of the slope v at fixed height δ is a
delta-function centered on δ/2s.) Since one only wants to
count walks that are crossing the barrier upwards, to the
condition that δ = b(s) one should add the requirement that
v ≥ db/ds (for a barrier of constant height, this is just v ≥ 0).

Thus, if earlier upcrossings can be neglected, f(s) can
be computed from the joint probability p(δ, v; s) that a walk
reaches δ at scale s with velocity v, as

f(s) ' fup(s) ≡
∫ +∞

b′(s)
dv [v − b′(s)] p(b(s), v; s) . (5)

Clearly, this formulation fails to discard those walks that
were above threshold at some s1 < s, but with δ(s2) < b(s2)
for s1 < s2 < s, i.e. walks with more than one upcrossing.
However, at small s, the fraction of such walks is tiny, since
the correlations between the steps make sharp turns very
unlikely.

Using Dirac’s and Heaviside’s distributions δD and ϑ,
and since p(b, v) = 〈 δD(δ−b)δD(δ′−v) 〉, this approximation
can also be written as

f(s) ' fup(s) =

〈[
d

ds
ϑ(δ − b)

]
ϑ(δ′ − b′)

〉
, (6)

which makes it clear that the condition to recover fCC is
that δ′ > b′ for most realisations. This is exactly the case for
correlated steps in the large mass regime, since δ = b implies
that typically δ′ ∼ b/s, and b′ � b/s for small s (as long as
the barrier is not receeding too fast from its initial value).

In terms of the conditional probability p(v|b(s)) =
p(b(s), v; s)/p(b(s); s), and omitting for ease of notation all
explicit s dependences, the upcrossing rate also reads

fup(s) = p(b)

∫ +∞

b′
dv (v − b′) p(v|b) . (7)

This allows a very intuitive explanation in terms of particles
in a box: p(b) plays the rôle of a number density at b (the
number of particles in the one-dimensional volume element
dδ), while the integral is the mean of δ′−b′ over all velocities
larger than the barrier’s increment given that δ = b, that is
the average escape velocity at b. The product of the two
evaluated at the boundary is by definition the escape rate
from the box. This makes it also easy to see the connection
to deterministic walks for which p(v|b)→ δD(b/2s), and thus
fup(s) → p(b) (b/2s − b′) = −p(b/

√
s) d(b/

√
s)/ds, which is

indeed fCC(s). Of course, at larger s, when p(v|δ) is broader,
fup(s) is a substantially more accurate approximation for
f(s).

2.3 Accounting for multiple upcrossings

The approximation of equation (5) accounts for all walks
that cross the barrier upwards at s, including those that

crossed the barrier previously, and thus it overestimates f(s).
The error is expected to increase as s gets large, when such
walks become increasingly common. Removing all the walks
that crossed at s1 < s, i.e. walks with δ(s1) = b(s1) and
v(s1) > b′(s1), and then integrating over s1, would account
correctly for the trajectories with just one crossing before the
last one. So, if we stopped here, and assuming for simplicity
a constant barrier, then we would get

f(s) =

∫ +∞

0

dv v p(b, v)

−
∫ s

0

ds1

∫ ∞
0

dv1 v1

∫ ∞
0

dv v p(b1, v1, b, v) + . . . , (8)

where p(b1, v1, b, v) is the quadrivariate distribution of δ(s1),
δ′(s1), δ(s) and δ′(s), and b1 ≡ b(s1) = b. It is straightfor-
ward to include a moving barrier, simply inserting b′ and b′1
where needed (à la equation 5).

Trajectories crossing more than once would now be over-
counted: for instance, a single walk crossing at s1 and s2

would be removed twice by this procedure, and needs to be
reintroduced. This would call for an additional correction, for
walks crossing twice or more, containing p(b1, v1, b2, v2, b, v)
and integrals over s1 and s2, and so on. However, trajecto-
ries with more zigzags will be even more suppressed, making
an expansion in the number of crossings meaningful in the
sense of perturbation theory at small s.

Similarly to equation (6) for the leading order term,
the first subleading correction can also be written in a more
evocative way as〈[

d

ds
ϑ(δ − b)

]
ϑ(δ′ − b′)

[
d

ds1
ϑ(δ1 − b1)

]
ϑ(δ′1 − b′1)

〉
, (9)

and the same pattern holds for higher order corrections. A
rigorous derivation of this expansion from a path integral
expression is carried out in Appendix A. However, for most
cosmological applications, equation (7) is sufficiently accu-
rate: Musso & Sheth (2012) showed that deviations exceed
the percent level only for s & 1, so one does not even need
the second term of equation (8).

2.4 Gaussian or not?

The logic above holds in full generality, regardless of the
shape of the distribution: the completely correlated non-
Gaussian walks have a modified s dependence, but the first
crossing distribution in this limit is still given by equa-
tion (4), and this limit will still be a good approximation as
s → 0. At larger s, an expansion in the number of previous
upcrossings is still sensible, where constraining the slope of
the walk is the most natural and efficient way of ensuring it
is upcrossing. So, equation (7) should remain a good approx-
imation to f(s) until s values where walks which can have
previously upcrossed more than once dominate, at which
point the next terms in the program (outlined in Section 2.3)
will become important.

That said, there is one sense in which the non-Gaussian
case is more complicated. For a Gaussian field, the proba-
bility distribution of δ on scale s only depends on the ratio
δ/
√
s. This makes

fCC(s) = −
(

d

ds

b√
s

)
p
(
b/
√
s
)
, (10)

c© 0000 RAS, MNRAS 000, 1–14



4 M. Musso, R. K. Sheth

where for ease of notation we have not written the scale
dependence of b(s) explicitly. If the barrier is constant,
b = δc, then δc/

√
s is usually called ν and one finds

sf(s) = ν p(ν)/2: the final factor of 1/2 is the reason Press
& Schechter multiplied by 2 so many years ago. But notice
that, in this limit, the first crossing distribution is very sim-
ply related to the shape of the pdf.

The same would also apply to the non-Gaussian case,
provided that the distribution of δ is indeed a function of
δ/
√
s only. This is rarely the case, and in general one has

fCC(s) =
(
〈v|b 〉 − b′

)
p(b) , (11)

where 〈v|b 〉 is the mean of p(v|b). For a non-Gaussian process
the mean is no longer b/2s, unless the distribution depends
on s only through δ/

√
s. However, as we will see it becomes

a reasonable approximation at small s.

3 EXPLICIT CALCULATION

In what follows, it will be convenient to use the rescaled
stochastic quantities

∆ ≡ δ√
s
, ∆′ ≡ d∆

ds
and ξ ≡ − ∆′√

〈∆′2 〉
≡ −2Γs∆′

(12)
where Γ, defined by (2Γs)2 ≡ 1/〈∆′2〉 is a weak function of
s (e.g. Musso & Sheth 2012). Notice that

〈∆2 〉 = 〈 ξ2 〉 = 1 and 〈∆ ξ 〉 = 0 ; (13)

i.e., ∆ and ξ are uncorrelated (although in general not in-
dependent) random variables. Similarly, we will work with

B(s) ≡ b(s)√
s

and X ≡ − dB/ds√
〈∆′2 〉

= −2ΓsB′, (14)

where B′ ≡ dB/ds. The sign of X is chosen so that a typical
barrier has X > 0, since b(s) for most problems of current
interest does not vary much with s, and thus B′ < 0. Since
we are enforcing δ = b, in these rescaled variables fup reads

fup(s) = −B′p(B)

∫ X

−∞
dξ

(
1− ξ

X

)
p(ξ|B) . (15)

Equivalently, in the notation of equation (6) one has

fup(s) =
d

ds

[ ∫ ∞
B(s)

d∆

∫ X(s1)

−∞
dξ p(∆, ξ; s, s1)

]
s1=s

, (16)

where s1 must be set equal to s after taking the derivative.
Since X ∼ B, we see explicitly that we recover fCC(s) in the
large mass limit, when X � 1.

3.1 Summary of the Gaussian result

If δ is a Gaussian process, then the joint distribution of ∆
and ξ is particularly simple because 〈∆ ξ〉 = 0. When ∆ = B,
then

pG(B, ξ) = pG(B) pG(ξ) =
e−B

2/2

√
2π

e−ξ
2/2

√
2π

. (17)

Inserting this in equation (15) shows that f(s) will be pro-
portional to −B′pG(B), which, for a Gaussian process is just

fCC(s) times a correction factor that is a function of X alone.
Performing the integral yields

fup(s) = −B′ e−B
2/2

√
2π

[
1 + erf(X/

√
2)

2
+

e−X
2/2

√
2πX

]
. (18)

This reduces to equation (10) – and therefore to fCC(s) – for
X � 1 (the first term in the square brackets tends to unity
while the second one is exponentially suppressed).

For a wide variety of smoothing filters, power-spectra
and barrier shapes, fup is substantially more accurate than
fCC, and remains accurate down to scales (X ' 1) on which
a relevant fraction of the walks have negative slopes (Musso
& Sheth 2012). However, it cannot be accurate to arbitrarily
small scales since, for constant barriers, the integral of fup(s)
over all s diverges (altough its accuracy increases for moving
barriers). This is, of course, related to the fact that multiple
upcrossings of the barrier become important as s increases.
Appendix A describes how to account for these, but since we
have not found a similarly simple analytic expression for the
resulting f(s) (but see Musso & Sheth 2013 for an excellent
and efficient numerical approximation), and the range over
which equation (18) is accurate covers most of the range
which is of interest in cosmology, we will continue with this
simpler case.

Before moving on, we think the special case of Gaus-
sian walks with correlated steps crossing a constant barrier
deserves further comment. Once one accounts for differences
in notation and presentation, our equation (18) turns out to
be the same as equation (3.14a) of Bond et al. (1991) for
the first crossing distribution of a barrier of constant height.
The origin of this agreement is that the expression within
angle brackets in our equation (6) is the same as their equa-
tion (3.12a). (The same is true for our equation A7 and their
A3.) Unfortunately, their Figure 9 emphasizes the fact that
ignoring multiple crossings is a bad approximation in the
low mass limit. This led them, and the rest of the field since,
to dismiss the approximation in which one ignores multi-
ple upcrossings, and to focus instead on what appeared to
be a more tractable problem (in which one ignores correla-
tions between steps). However, as emphasized by Musso &
Sheth (2012) in their more general analysis, the upcrossing
approximation is in fact rather good in the high mass limit,
and works well for arbitrary (i.e. not just constant) barriers.
We now show how it can be generalized to arbitrary fields.

3.2 Generic non-Gaussian case

The joint probability distribution of a generic stochastic pro-
cess can always be written as an asymptotic expansion in
Hermite polynomials around the Gaussian distribution ob-
tained from the second moments. Since ∆ and ξ are uncor-
related, their distribution is

p(B, ξ) =
∑
n,k

〈Hn(∆̂)Hk(ξ̂)〉
n! k!

Hn(B)Hk(ξ) pG(B, ξ) , (19)

where we have used hats to distinguish the stochastic quan-
tities from the continuous variables of the probability distri-
bution, and Hn(x) ≡ exp(x2/2)(−d/dx)n exp(−x2/2). This
expression follows from the fact that the Hermite polynomi-
als form an orthogonal basis with respect to the Gaussian

c© 0000 RAS, MNRAS 000, 1–14
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weight. Rearranging the terms of the sum and factoring out
p(B) shows that

p(ξ|B) =
∑
k

〈Hk(ξ̂)|B 〉
k!

(
− d

dξ

)k
pG(ξ) , (20)

where

〈Hk(ξ̂)|B 〉 =

∑
n〈Hn(∆̂)Hk(ξ̂)〉Hn(B)/n!∑

n〈Hn(∆̂)〉Hn(B)/n!
(21)

and 〈 f(ξ̂)|B 〉 is the expectation value of f(ξ̂) given that
∆̂ = B, i.e. the one computed from p(ξ|B).

This expression must be inserted into equation (15),
and integrated over ξ. The k = 0 term is just pG(ξ), and
gives the same as equation (18), with pG(B) replaced by
p(B). The k = 1 term can be integrated by parts and gives
−[〈ξ̂|B 〉p(B)/(2Γs)][1 + erf(X/

√
2)]/2. However, 〈ξ̂|B 〉p(B)

is pG(B) times the numerator of equation (21) with k = 1,
for which one has 〈Hn(∆̂)ξ̂〉 = −2Γs〈Hn+1(∆̂)〉′/(n+1). Fur-
thermore, Hn(B)pG(B) =

∫∞
B

d∆Hn+1(∆)pG(∆), so that

p(B)〈ξ̂|B〉 = −2Γs

∫ ∞
B

d∆ [∂p(∆)/∂s] . (22)

Finally, for k ≥ 2 all terms can be integrated by parts and
pick up a factor of Hk−2(X)pG(X)/(2sΓ). Putting all the
contributions together yields

fup(s) =

[
d

ds

∫ ∞
B(s)

d∆ p(∆)

]
1 + erf(X/

√
2)

2

−B′p(B)
e−X

2/2

X
√

2π

[
1 +

∞∑
k=2

〈Hk(ξ̂)|B〉
k!

Hk−2(X)

]
(23)

as the non-Gaussian generalization of equation (18). Equa-
tion (23), and the closely related equation (25) below, are
the main results of this paper. The connection is most clearly
seen by supposing that p(δ; s) is a function of δ/

√
s alone,

in which case the derivative of the integral in the first line,
which we could have written as fCC(s), becomes −B′p(B).
Then equation (23) – apart from the polynomial corrections
in the square brackets of the second line, which we suppose
small – becomes equation (18), except that here p(B) is the
full non-Gaussian distribution. In general, of course p(δ; s)
will not be a function of δ/

√
s only; the associated depar-

ture from self-similarity will introduce an additional term,
and this is why equation (23) involves an explicit derivative
with respect to s.

In the large mass regime, when X � 1, the entire sec-
ond line of equation (23) is suppressed with respect to the
first one, as it was in the Gaussian case, and the first crossing
rate reduces to equation (4). The Hermite polynomial cor-
rections in the second line of equation (23) would singularly
blow up at large X, but are in this regime suppressed by the
exponential cutoff exp(−X2/2). They have a chance of be-
coming non-negligible only at larger s, when X ∼ 1 and the
exponential suppression is no longer effective. In this regime,
however, the perturbative treatment of these non-Gaussian
corrections is fully under control.

3.3 Large non-Gaussianity

Equation (23) is particularly well suited for a case – like pri-
mordial non-Gaussianity – where all the non-linear moments

〈∆n〉c are small. For such a process, deviations from linear-
ity are relevant only when B grows large, as described in the
previous Section, while for B ∼ 1 all corrections are pertur-
bative. However, one may worry that if the non-Gaussian
moments of the distribution are large, corrections from the
series in equation (23) may become relevant at large s. This
happens because the Edgeworth expansion of p(ξ|B) around
pG(ξ), that is equation (20), is badly behaved if the condi-
tional mean and variance significantly differ from 0 and 1,
and cannot be truncated at any order.

Still, regardless of the size of the non-Gaussian correc-
tions, equation (7) may always be written – exactly – as

fup(s) = fCC(s)

∫ ∞
b′

dv

(
1− µ− v

µ− b′

)
p(v|b) , (24)

with µ ≡ 〈v|b 〉 and fCC(s) given by equation (11). If the
mean and variance of p(v|b) significantly differ from their
Gaussian values b/2s and 1/(4Γ2s), then it is more appropri-
ate to write p(v|b) as an Edgeworth series around a Gaussian
with mean and variance given by the true renormalized non-
Gaussian values. One can then define a new rescaled variable
ξ̃ ≡ (µ − v)/

√
〈v2|b 〉 − µ2, and following exactly the same

steps as in Section 3.2, one gets

fup(s) = fCC(s)

[
1 + erf(Y/

√
2)

2
+
e−Y

2/2

√
2πY

+

∞∑
k=3

〈Hk(ξ̃)|B〉
k!

Hk−2(Y )
e−Y

2/2

√
2πY

]
, (25)

where

Y ≡ µ− b′√
〈v2|b 〉 − µ2

=
〈∆′|B 〉 −B′√
〈∆′2|B 〉 − 〈∆′|B 〉2

(26)

accounts for the non-Gaussian corrections to the mean and
variance of the conditional distribution in a non-perturbative
way.

This expression is very similar to equation (23), and,
like it, is the main result of this paper. While it has the
same large scale (s � 1) limit as before, fCC(s), the en-
tire expression here is proportional to fCC(s), whereas, for
equation (23) this only happened if 〈∆′|B 〉 = 0 (for which
fCC(s) = −B′p(B)). Moreover, now the series starts at
k = 3, as all terms like 〈∆′∆n〉cBn and 〈∆′2∆n〉cBn, which
can become important at small scales if the moments are
large, are included in Y . In this respect, equation (25) is a
more efficient expansion than is equation (23). Of course,
one should still worry about further corrections from all the
non-linear moments like 〈∆′3∆n〉c. If these were of the same
order (as they in principle are), one should keep all the terms
of the infinite series in equation (25). If p(ξ|B) is known one
can compute them by writing

∞∑
k=3

〈Hk(ξ̃)|B〉
k!

Hk−2(Y )
e−Y

2/2

√
2π

=

∫ Y

−∞
dy C(y) , (27)

where C(y) ≡
∫ y
−∞dξ̃ p(ξ̃|B) − [1 + erf(y/

√
2)]/2 is the dif-

ference between the cumulative distributions of p(ξ̃|B) and
pG(ξ̃). However, we will see shortly that there is a broad and
fairly generic class of models for which all these corrections
vanish identically.

Before moving on, we note that a remarkable feature of
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6 M. Musso, R. K. Sheth

both equations (23) and (25) is that, although we started
from the non-Gaussian bivariate distribution p(b, v; s), the
upcrossing distribution fup(s) can be expressed in terms of
a function modulating the univariate non-Gaussian distribu-
tion p(b; s). Therefore, for the scales where f(s) ' fup(s), we
have managed to disentangle the problem of the first crossing
of the barrier from that of the evaluation of the probability
of the walks, which we deal with next.

3.4 Non-Gaussian case: large mass limit

We have already argued that in the large mass limit the
formal expression for the first crossing rate coincides with
equation (4). If p(B) is known, then f(s) can be written as

fCC(s) =

[
−B′ +

+∞∑
n=3

〈∆n〉′c
n!

(
− ∂

∂B

)n−1 ]
p(B; s) , (28)

where the infinite sum is the (integral of the) Kramers-Moyal
expansion for ∂p/∂s. This sum is what gives 〈∆′|B 〉p(B).
Often, however, the single point p(B) is not known: only
its moments are. The crucial point, therefore, is to estimate
p(B) from its moments. This can be written as

p(B; s) =
eW (B;s)

√
2π

, (29)

where the full expression of W (B; s) in terms of the moments
is given in Appendix B as a series of modified Hermite poly-
nomials.

The function W , which corresponds to the logarithm of
the Edgeworth expansion of p(B; s), has a straightforward
interpretation in terms of connected Feynman diagrams con-
structed out of the connected moments of the distribution,
and better convergence properties that the Edgeworth ex-
pansion itself. We also show in the Appendix that the large
mass limit (B � 1) of W (B; s) is obtained by keeping
only the highest order term of each polynomial, which in
diagrammatic language corresponds to discarding diagrams
with loops. This approximation is also what one would get
by doing the analysis in Fourier space and transforming back
to real space by means of a stationary phase approximation.
In this regime, the infinite series of polynomials turns into a
simpler infinite power series, whose first terms are

W (B; s) ' −B
2

2
+
〈∆3〉c

3!
B3 +

〈∆4〉c − 3〈∆3〉2c
4!

B4 + . . . .

(30)
In the same spirit, we can approximate the n-th derivative
as (∂/∂B)np(B) ' (∂W/∂B)np(B), since higher derivatives
of W (B; s) also correspond to loop diagrams and are sub-
leading.

The consistency of the truncation of W (B; s) is a del-
icate subject. Clearly, as B becomes large one should keep
adding more and more terms to Eq. (30), especially if the
non-Gaussian moments are large, and a true B → ∞ limit
would necessarily require resumming the whole series. Fortu-
nately, the range of values of interest for Cosmology (where
B increases both with mass and redshift) is not so extreme,
since primordial non-Gaussianities are fairly small (we quan-
tify this shortly).

Truncating the Kramers-Moyal series in Eq. (28) is on
the other hand less dangerous. The reduced moments typi-
cally tend to constants on large scales, and the appearance

of their derivatives in the coefficients of the series introduces
additional suppression. Furthermore, this series does not sit
in an exponential, so errors in the truncation are potentially
less harmful. Even for the n = 3 term of the series, keep-
ing just the leading term of ∂W/∂B gives a O(1) result (or
less, given the additional suppression due to the scale deriva-
tive). Within the range of parameters outlined above, a fair
approximation for the first crossing rate is thus

f(s) '
(
−B′ + 〈∆

3〉′c
3!

B2

)
eW (B;s)

√
2π

, (31)

with W (B; s) given by Eq. (30).
In many cases 〈∆3〉c (and more generally 〈∆n〉c) is only

weakly scale dependent. If we can drop the 〈∆3〉′c term,
then equation (31) simplifies even further, reducing to equa-
tion (10). In this regime, f(s) is just −B′p(B), so that the
ratio of the non-Gaussian result to the Gaussian one simply
corresponds to the ratio of the pdf’s:

fNG(s)

fGauss(s)
→ eW (B)

e−B2/2
= exp(〈∆3〉cB3/3! + . . .) . (32)

Evidently, the difference from the Gaussian case will only be
apparent if 〈∆3〉cB3 is large; it will be more obvious at the
large B, i.e. in the large mass tail. We will return to this
limit in the next section.

3.5 Testing the model: non-linear transformations
of Gaussian variables

We now test our formalism in a few simple cases that also
admit an analytical treatment. A common way to obtain
a non-Gaussian distribution for δ is to apply a non-linear
transformation to a Gaussian variable δL. Doing this on ev-
ery scale sL ≡ 〈 δ2

L 〉 maps the Gaussian walk δL(sL) into a
non-Gaussian walk δ(s). As a result, the barrier b for the
non-Gaussian variable maps into an effective barrier bL that
δL must cross. A similar mapping links the reduced variables
∆ and B to their Gaussian counterparts ∆L ≡ δL/

√
sL and

BL. The non-Gaussian first crossing distribution f(s) is then
related to the Gaussian f(sL) for the barrier bL, as

f(s) =
dsL

ds
f(sL). (33)

Hence, on the scales where f(sL) ' fup(sL), we can sim-
ply insert BL, dBL/dsL and Γ2

L ≡ 1/[4s2
L〈(d∆L/dsL)2〉] in

equation (18) to obtain a good approximation to f(s).

3.5.1 General formalism

In general, an arbitrary transformation ∆ = F (∆L, sL) will
also have an explicit dependence on sL. Differentiating w.r.t.
s gives

∆′ =
dsL

ds

[
∂F

∂∆L
∆′L +

∂F

∂sL

]
, (34)

where ∆′L ≡ d∆L/dsL. This means that the mean and vari-
ance of the conditional distribution p(∆′|B) are

〈∆′|B 〉 =
dsL

ds

∂F (BL, sL)

∂sL
(35)
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and

〈∆′2|B 〉 − 〈∆′|B 〉2 =

[
dsL

ds

∂F (BL, sL)

∂BL

]2

〈∆′2L 〉 . (36)

In addition, at fixed B, the relation between ∆′ and ∆′L is
linear, so all higher moments of p(∆′|B) vanish identically,
and hence, the entire second line of equation (25) vanishes
as well.

If we assume for simplicity that the transformation is
monotonic (although this requirement can be easily relaxed),
then BL = F−1(B) is unique and p(B) = (dBL/dB)pG(BL).
Therefore, at small s, f(s) is well approximated by

fCC(s) =
(
〈∆′|B〉 −B′

)
p(B) = −dsL

ds

dBL

dsL

e−B
2
L/2

√
2π

. (37)

At intermediate s one need only use the first line of equa-
tion (25), as each term in the second line equals zero, with

Y =
∂F/∂sL − (ds/dsL)B′

|∂F/∂BL|
√
〈∆′2L 〉

= −dBL/dsL√
〈∆′2L 〉

≡ XL (38)

as the counterpart of X for the Gaussian walks. This con-
firms the intuition that the first crossing distribution for
these processes can be obtained from that of the Gaussian
walks crossing the effective barrier BL.

All that is left to do is to relate 〈∆′2 〉 = 1/(2Γs)2 to its
Gaussian counterpart 〈∆′2L 〉. Taking the variance of equa-
tion (34) gives(

ds/dsL

2Γs

)2

= 〈
(
∂F

∂∆L

)2

〉〈∆′2L 〉+ 〈
(
∂F

∂sL

)2

〉 , (39)

which completes the link. Notice that even after ∆ = F (∆L)
is given, both ds/dsL and 〈∆′2L 〉 (since ∆′L is independent of
∆L and ∆) are essentially free parameters, that can be used
for additional tuning of the transformation. This result (i.e.,
equation (25) without the second line) still neglects multiple
crossings, but the treatment of non-Gaussianity is otherwise
exact.

3.5.2 A fully worked example

Consider the first crossing distribution of a constant barrier
b = δc by Lognormal walks given by the exponential map

1 + δ/δc = exp(δL/δc − sL/2δ
2
c ) . (40)

Since 〈 (1 + δ/δc)
n 〉 = exp[n(n−1)sL/2δ

2
c ], these walks have

〈 δ 〉 = 0 and

1 +
s

δ2
c

= exp(sL/δ
2
c ) =

ds

dsL
≡ Σ . (41)

Inverting these relations, we get δL = δc ln(1+δ/δc)+sL/2δc
and sL = δ2

c ln(1 + s/δ2
c ). The distribution of δ is therefore

Lognormal, with

p(δ) =
pG(δL)

1 + δ/δc
=

e−δ
2
L/2sL

(1 + δ/δc)
√

2πsL

; (42)

in the next section we use this transformation to mimic
the distribution of the final (rather than primordial) den-
sity field.

A constant barrier δc for the Lognormal walks becomes
a linearly increasing barrier bL = δc ln(2) + sL/2δc for the

Gaussian walks. This illustrates nicely the rather general
result that a constant barrier for the non-Gaussian walks
translates to a moving effective barrier for the underlying
Gaussian walks. When s� 1, f(s) is given by equation (37)
with

BL =
δc√
sL

(
ln 2 +

sL

2δ2
c

)
=

ln 2√
ln Σ

+

√
ln Σ

2
(43)

and dsL/ds = 1/Σ. Working out the computation gives

fCC(s) =

(
ln 2

ln Σ
− 1

2

)
2−[3+(ln 2/ ln Σ)]/2

δ2
c Σ9/8

√
2π ln Σ

. (44)

Conversely, for a constant barrier, B′ = −δc/2s3/2 and

−B′p(B) =
δc
2s
p(b) =

δc
4s
pG(bL) =

2−[3+(ln 2/ ln Σ)]/2

4sΣ1/8
√

2π ln Σ
, (45)

where the second equality comes from setting δ = δc in equa-
tion (42). This shows explicitly that fCC(s) 6= −B′p(B).

At intermediate s one must use equation (25) instead
(where the second line vanishes), inserting in it Y from equa-
tion (38). That is,

Y = XL = −2ΓLsL
dBL

dsL
= ΓLΣ

√
ln Σ

(
ln 2

ln Σ
− 1

2

)
. (46)

This includes all non-Gaussian effects exactly, and will thus
be different from using equation (23) and ignoring the sum
over Hermite polynomials in it, both because −B′p(B) 6=
fCC(s) and because X 6= XL. To see this last point, however,
we need the explicit relation between Γ and ΓL.

Differentiating equation (40) w.r.t. s one has

v ≡ dδ

ds
=

(
vL −

1

2δc

)
exp

(
δL
δc
− 3

2

sL

δ2
c

)
, (47)

where vL ≡ dδL/dsL, for which 〈 v 〉 = 0 and

〈 v2 〉 =
〈 v2

L 〉+ 1/4δ2
c

1 + s/δ2
c

, (48)

or equivalently

Γ2 =
1

4s〈 v2 〉 − 1
=

1 + s/δ2
c

4s〈 v2
L 〉 − 1

; (49)

using 4sL〈 v2
L 〉 = 1 + 1/Γ2

L and solving for ΓL returns

1

Γ2
L

=
ln Σ

Γ2

[
1 +

δ2
c

s
+ Γ2

(
δ2
c

s
− 1

ln Σ

)]
. (50)

This expression for ΓL leads to

Y =
ΓΣ(ln 2/ ln Σ− 1/2)√

1 + δ2
c/s+ Γ2(δ2

c/s− 1/ ln Σ)
, (51)

which clearly differs from X = Γδc/
√
s. Even for small s,

when ln Σ→ s/δ2
c , one still gets that XL = Y → X ln 2.

To check the accuracy of our analysis we have computed
numerically the first crossing distribution via Montecarlo re-
alizations of Lognormal walks, obtained by applying the ex-
ponential map to Gaussian walks with both correlated and
uncorrelated steps. The histograms in Figure 1 show the re-
sult for a barrier of constant height δc in these two cases. The
Lognormal walks clearly have more first crossings at large
δ2
c/s � 1, illustrating that we are working in the regime of

large non-Gaussianity. This is true for walks with correlated
and uncorrelated steps, and is mainly a consequence of the

c© 0000 RAS, MNRAS 000, 1–14



8 M. Musso, R. K. Sheth

Figure 1. First crossing distribution of a barrier of constant
height δc by Gaussian (dotted curves) and Lognormal (his-

tograms) walks having correlated and uncorrelated steps. The lat-

ter are obtained by applying the exponential map to the former.
The correlations between steps come from Gaussian smoothing of

a power spectrum with P (k) ∝ k−1. The upper solid curve shows

sf(s) for Lognormal walks with uncorrelated steps, obtained via
equation (33) by transforming the exact solution for Gaussian

walks crossing a linearly increasing barrier sLf(sL). The lower

solid curve shows equation (25) for Lognormal walks with corre-
lated steps, equivalent to transforming the approximate solution

to the Gaussian problem with linear barrier. The dashed curve

shows equation (23) with all Hermite correction terms set to zero.

fact that at large masses sL ' s but bL ' δc ln 2 < δc, which
makes reaching the barrier easier.

Although all other results in this paper concerned walks
with correlated steps, we have also included uncorrelated
steps here as a consistency check of our formalism. The first
crossing distribution f(sL) for the Gaussian walks crossing a
linearly increasing barrier has a known exact solution (Sheth
1998), so f(s) obtained through equation (33) is also ex-
act. The upper solid curve, which provides an excellent de-
scription of the upper histogram, shows sf(s) for Lognormal
walks with uncorrelated steps, obtained via equation (33)
by transforming the exact solution sLf(sL) for the effec-
tive Gaussian walks. This confirms that the intuition that
the first crossing distribution for Lognormal walks can be
mapped to one of Gaussian walks crossing an effective bar-
rier is correct.

In contrast, for walks with correlated steps (in our case,
we chose to smooth a power spectrum P (k) ∝ k−1 with a
Gaussian filter) we must rely on equation (23) or (25), both
of which approximate f(s) with the probability of crossing
upwards (but not necessarily for the first time). However,
while the two are formally identical, in the latter all the Her-
mite terms identically vanish and non-Gaussian effects are
treated exactly. Moreover, it is equivalent to approximat-
ing f(sL) for the Gaussian walks with equation (18), which
is known to tend to the exact result when the barrier re-
cedes faster than the Gaussian distribution spreads (Musso
& Sheth 2013), as is already the case for a linear barrier. The

result is shown by the lower solid curve, while the dashed
curve shows equation (23) with all Hermite correction terms
set to zero to evaluate the effect of truncating the series.
Clearly, both are in good agreement at large δ2

c/s� 1, with
equation (25) providing a better description at smaller δ2

c/s,
as expected. We conclude that our analysis is able to pro-
vide a good description of the first crossing distribution by
non-Gaussian walks even when the non-Gaussianity is large.

Before moving on, we note that because bL increases
faster than the width of the Gaussian distribution

√
sL, a

fraction of walks never cross the barrier (as discussed by
Musso & Sheth 2013). For sufficiently high barriers, only a
tiny fraction of the walks will cross. However, if the physics
of collapse does not depend on whether or not the initial
field was Gaussian, then we expect δc to be of order unity in
both cases, and the barrier does not become very high.

As a simple additional example, consider a polyno-
mial transformation δ = δL + α(δ2

L − sL)/
√
sL + βδ3

L/sL,
which returns a variable with zero mean and variance s =
s2

L[1 + 2(α2 + 3β) + 15β2]. Tuning the values of α and β, one
can use this transformation to reproduce the skewness and
kurtosis of any distribution, and in particular to mimic the
effect of primordial non-Gaussianity of a given type (see for
instance Matarrese et al. 2000, or more recently Musso &
Paranjape 2012. Notice, however, that the correlations be-
tween scales in the resulting model are inherited from the
underlying Gaussian walks, and the full three-point func-
tion at different scales may not, and in general will not, be
reproduced correctly).

3.5.3 Further generalization

As we noted above, a similar rescaling (with no additional
corrections) occurs whenever the conditional distribution
p(v|b) remains Gaussian, even though p(b) is not. This is the
case of most phenomenological models used in Cosmology,
with at most small perturbations around a Gaussian distri-
bution. In order to construct a model for which the second
line of equation (25) becomes large, one should consider for
instance a transformation of the kind

δ = δL + δc

∫ sL

0

dSL

(
v2

L − 〈 v2
L 〉
)
, (52)

which once differentiated reads

v =
dsL

ds

[
vL + δc

(
v2

L − 〈 v2
L 〉
)]
. (53)

In such a transformation, vL must always appear in an inte-
gral so that no additional stochastic variables are introduced,
and it must appear at least quadratically so that the relation
with v is non-linear. We are not aware of any phenomeno-
logical motivation for tranformations such as equation (52),
so we have not pursued this further.

4 APPLICATIONS

The analysis above was motivated by the possibility that
the initial density fluctuation field was non-Gaussian. We
discuss this first, and then show that we can use our results
to address a number of other interesting problems as well.
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4.1 Halo abundances in models with primordial
non-Gaussianity

Primordial non-Gaussianity is expected to be small (Ade
et al. 2013). This means that we can work with equation (23)
rather than equation (25). In addition, for both local and
equilateral models of non-Gaussianity, p(B) is only known
from its moments, via equations (29) and (30), which depend
on B and 〈∆3 〉c. As discussed by D’Amico et al. (2011), for
values of 〈∆3 〉c ∼ 0.01 and B ∼ 10 (corresponding to the
most massive clusters of galaxies) the three terms listed in
Eq. (30) are O(100), O(10) and O(1) respectively, while ne-
glected terms start with O(10−1). These values are obtained
for primordial non-Gaussianity with fNL ∼ 100, which is
now excluded by the Planck mission (Ade et al. 2013). How-
ever, since even larger values of B can be attained at higher
redshifts, or by the study of different objects like the reion-
isation pattern of cosmic structures (Joudaki et al. 2011;
D’Aloisio et al. 2013; Lidz et al. 2013), the previous discus-
sion about how to truncate W (B), besides having its own
theoretical interest, was not unnecessary. In any case, this
shows that the relevant large mass limit of f(s) is given by
equation (31).

Most previous work on non-Gaussian excursion sets has
considered a barrier of constant height, for which −B′ =
B/2s. This is for instance the case of Matarrese et al. (2000)
and LoVerde et al. (2008), who also explicitly assume that
f(s) = 2fCC(s) (see however the discussion on the fudge
factor by Matarrese et al.). This assumption, together with
the choice of a Top-Hat filter like the one they use, does
not appear justified from the point of view of excursion sets.
However, their main concern was reproducing the results of
N-body simulations, rather than excursion sets, and multi-
plying by 2 was going in the correct direction. Also, this error
disappears when considering the non-Gaussian to Gaussian
ratio, as they did, with the aim of computing the correction
that should multiply the result Gaussian simulations.

The correspondence between our expression in the large
mass limit and theirs is helped by noting that it is conven-
tional to define σS3 ≡ 〈∆3〉c, so our 〈∆3〉′c ≡ d(σS3)/ds.
Since equation (4) with an extra factor of 2 is the full story,
they are in effect missing the X dependent corrections which
matter at smaller masses.

Our large mass limit differs slightly from that of
LoVerde et al. only because they keep the Edgeworth ex-
pansion, while we have been careful about how we write
the large mass limit of equation (29). In this we followed
D’Amico et al. (2011) who pointed out that perturbative
non-Gaussian corrections blow up at small s, and need to be
resummed in an exponential, whose argument corresponds
to equation (30) in this regime. The same approach is fol-
lowed by LoVerde & Smith (2011).

If σS3 is only weakly scale-dependent, so the 〈∆3〉′c term
can be dropped, then f(s) satisfies equation (32). Musso
& Paranjape (2012) used this to argue that the large scale
limit of the non-Gaussian mass function from correlated ran-
dom walks is always one half of the one obtained without
filter-induced correlations, finding very good agreement with
Monte-Carlo simulations. They also pointed out that this
factorisation justifies the common practice of obtaining the
full non-Gaussian mass function as the product of the fit
from Gaussian simulations times an analytically predicted

non-Gaussian correction. Our results confirm this intution,
and at the same time highlight the conditions under which
it holds true. E.g., our analysis shows that writing f(s) in
this way is not appropriate at lower masses, nor will it be
accurate if σS3 is scale-dependent.

From Figure 1 of D’Amico et al. (2011), in whose no-
tation 〈∆n〉c = εn−2, one can infer that for local non-
Gaussianity 〈∆3〉c ' (2× 10−4)fNL and 〈∆4〉c ' 10−7f2

NL +
(2 × 10−8)gNL, both quantities being nearly constant. For
non-Gaussianity of the local type the ratio gives

fNG(s)

fGauss(s)
' exp

[
fNL

30

B3

103
+

(gNL − f2
NL)

1.2× 105

B4

104
+ . . .

]
. (54)

Interestingly, this is the same as the exponential part of
equation (34) of D’Amico et al. (2011), which however was
derived for uncorrelated steps and thus has a factor of 2
in what they call fPS. Even more interestingly, this corre-
sponds to the first line of their equation (44) assuming that
their factor (1− κ̃+ . . . ) due to filter corrections – obtained
following Maggiore & Riotto (2010) – resums exactly to 1/2
(while setting their DB = 0 one gets 1 − κ̃ = 1 − κ = .54).
Differences start emerging only at the order ε1ν: including
the first terms neglected in equation (54) would give in their
language (2 − c1)/2 instead of (4 − c1)/4 as the coefficient
for this term. Since these corrections are anyway quite small
(much less than one percent on the scales of interest) this
substantially confirms their result, in a much simpler and
more intuitive way.

Moving barriers and weakly non-Gaussian fields were
first considered by Lam & Sheth (2009), but only for a sharp-
k filter. They found that, for moving barriers also, the large
mass limit is just the Gaussian result times the non-Gaussian
correction to the pdf, provided d(σS3)/ds is small. Our more
general analysis confirms this is true for other filters also,
although the Gaussian result itself depends on the smoothing
filter.

A self-consistent treatment of excursion sets with corre-
lated steps was laid out by Maggiore & Riotto (2010), who
used a path integral formalism to compute the first cross-
ing rate for barriers of constant height. Unfortunately, their
choice to expand around the uncorrelated Gaussian solu-
tion makes the calculations very involved. For their choice
of filter (Top-Hat) and matter power spectrum (ΛCDM),
the first non-Markovian correction brings their Gaussian re-
sult within 10% of the correct answer, but the reliability of
the non-Gaussian corrections becomes problematic for large
masses (while we instead recover the exact large mass limit
already at leading order). Moreover, in their framework a
change in the correlation function (like using a different filter
or power spectrum) would require to redo the calculations.
The same is true for other works following the same approach
like Corasaniti & Achitouv (2011) (who were only able to
consider linear barriers with small slope) and D’Amico et al.
(2011) (who did not consider moving barriers, but focussed
on the safer non-Gaussian to Gaussian ratio, and assessed
the range of validity of their results).

In conclusion, while there are sometimes small differ-
ences in detail, all analyses suggest that the only regime
where one might hope to detect primordial non-Gaussianity
is at large masses.
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4.2 Stochastic barrier models

It is well known that the physics of halo formation depends
on more than the initial overdensity field – the shear field
associated with a proto-halo patch also plays an important
role (Bond & Myers 1996; Sheth et al. 2001). Following Sheth
& Tormen (2002), models of this process typically search for
the largest smoothing scale on which

δL ≥ δc (1 + q/qc), (55)

where q is an independent stochastic variable (or variables)
that is typically non-Gaussian. Such models are usually de-
scribed in terms of multiple-dimensional random walks cross-
ing a barrier, and have a considerably richer structure than
the one-dimensional walks we have considered in the paper
(Castorina & Sheth 2013). Upon defining

δ ≡ δL − βq , (56)

with β = δc/qc, the problem reduces to finding the first
crossing distribution of a constant barrier δc by the non-
Gaussian variate δ, whose correlation structure is inherited
from those of δL and q.

For instance, Sheth et al. (2013) study a model in which
q2 ≡

∑5
i=1 δ

2
i /5 with 〈 δ2

i 〉 = 〈 δ2
L 〉 ≡ sL and 〈δiδj〉 = 0. That

is, they assume that q2 is independent of δ and is drawn from
a Chi-squared distribution with 5 degrees of freedom, each
of which is correlated like δ. In Musso & Sheth (2014) we
show that, because q is built from Gaussian walks, this is a
case for which also truncating equation (23), neglecting the
Hermite polynomials, actually leads to the exact result (for δ
upcrossing a barrier). Moreover, it has fCC(s) = −B′p(B),
which means that the truncated equation (23) is actually
just equation (18), with pG(B) replaced by p(B). This is a
remarkably simple result for these physically motivated non-
Gaussian walks.

4.3 Halo abundances from the nonlinear field

The excursion set approach was formulated to predict the
abundance of nonlinear objects from the initial fluctuation
field. However, because equation (25) is valid even if p(b)
is highly non-Gaussian, we can use it to predict halo abun-
dances from the late time field as well. The problem is partic-
ularly simple because halos are often identified in the non-
linear field by finding a spherical or triaxial patch that is
a fixed multiple of the background density, independent of
halo mass (Despali et al. 2013). In effect, this means our ex-
cursion set approach, applied to the nonlinear non-Gaussian
field with a constant barrier, is an analytic model of the
numerical halo finding algorithm.

This has an important consequence for studies of the
halo distribution that seek to approximate the smoothed
halo field as a Taylor series in quantities derived from the
underlying matter distribution. If the Taylor series is in the
matter overdensity only, then the halos are said to be lo-
cally biased with respect to the mass. Our analysis shows
that the bias must be nonlocal since the mass overdensity is
not the only quantity which matters: at the very least, the
first derivative of the matter field with respect to smooth-
ing scale plays an important role in determining halo abun-
dances, and this is expected to make the halo-mass bias k-
dependent (Musso & Sheth 2012).

That said, the critical nonlinear overdensity is of order
100× the background. This is substantially (at least 10×)
larger than the rms value of the field when smoothed on the
typical halo scale, so it may be that the additional terms
which come from constraining the slope are irrelevant. Since
in this limit, our equation (25) reduces to equation (4), the
halo mass function is very simply related to the probabil-
ity distribution function of the nonlinearly evolved field. We
are in the process of exploring this nonlinear excursion set
approach further.

To do this quantitatively, we must face the question of
how precisely to implement the excursion set approach in
the nonlinear field. The most naive application would mean
that we are interested in the smallest s at which δ ≥ δc.
To see why this will be problematic, consider the limit in
which the density field is made of halos which are negligibly
small compared to the spaces between them. Then, if we set
δc � 1, only those cells which are precisely centered on a halo
will have δ ≥ δc; the vast majority of randomly placed cells
will have δ � δc. Since the excursion set approach equates
the fraction of such cells to the mass fraction in halos, it will
predict that only a small fraction of the total mass is bound
up in halos. E.g., for the Lognormal distribution described
above, the excursion set approach with p(δ, s) will have a first
crossing distribution which looks just like that for Gaussian
walks crossing a linearly increasing barrier bL = ln(1 + δc) +
sL/2. For uncorrelated steps it is well-known that only a
fraction e− ln(1+δc) = (1 + δc)

−1 of the walks will cross such
a barrier (similar result applies to correlated steps, as shown
by Musso & Sheth 2013), leading to the incorrect conclusion
that only a small fraction of the mass is bound-up in halos.

Indeed, in practice, tests of the excursion set approach
correspond to studying the statistics of walks that are
centered on randomly chosen particles of the distribution
(rather than randomly chosen positions). A crude way to
account for this is to mass-weight the walks when estimat-
ing the first crossing distribution (e.g. Sheth 1998). This
would be exact for the point-cluster model (Abbas & Sheth
2007). That is to say, the non-Gaussian distribution which
should be inserted into the excursion set formula is not
p(δ, s) itself, but (1 + δ) p(δ, s). The result of mass-weighting
the distribution is particularly easy to see for the Lognor-
mal, since 1 + δ = eln(1+δ) so (1 + δc) p(δc, s) looks like
exp(−b̄2L/2sL)/

√
2πsL where b̄L ≡ ln(1 + δc) − sL/2. Thus,

mass weighting the walks is like studying Gaussian walks
crossing a linearly decreasing (rather than increasing) bar-
rier, so all walks are guaranteed cross.

The analysis above has a nice connection to previous
work, and so allows one to address a related question, having
to do with the self-consistency of the approach. Namely, sup-
pose we estimate halo abundances not from the initial field
(as is usually done), but from a weakly evolved one. How
does the prediction compare with that based on the initial
field (the usual estimate)? If the approach is self-consistent,
these two estimates should agree.

Let p(M |VE) denote the probability that a cell of vol-
ume VE placed randomly in the evolved distribution contains
mass M . This distribution has mean M̄ ≡ ρ̄VE, where ρ̄ is
the comoving background density, so the Eulerian density is
1+δE ≡M/M̄ . Local models of the evolution from the initial
Lagrangian density δL to the Eulerian one assume that 1+δE
is a deterministic invertible function of δL. In perturbation
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theory, this means that∫ ∞
M

dmp(m|VE) (m/m̄) =

∫ ∞
δL(M,VE)

dδ p(δ|s(M)) (57)

(Bernardeau et al. 2002; Lam & Sheth 2008). (If halos were
made of discrete particles, then this mass weighting is similar
to only counting cells which are centered on particles of the
distribution.) Halos correspond to large M/ρ̄VE for which
δL(M,VE) → δc(M). Since the right hand side here is the
same as the right hand side of equation (4), the extra factor
of M/M̄ on the left hand side here shows that it is the mass-
weighted Eulerian distribution which is related to the halo
mass function. But mass-weighting the walks was is exactly
what we argued was necessary to make sense of the excur-
sion set predictions, so it is reassuring that this is, in fact,
what equation (57) does. This demonstrates self-consistency
at least at the higher masses, where equation (4) is the ap-
propriate limit of the two (i.e., the Eulerian and Lagrangian)
predictions.

5 DISCUSSION

We derived an intuitively simple formal expansion for the
first crossing distribution of random walks with correlated
steps, in which walks are ordered by the number of times
they cross the barrier from below (equation 8). The na-
ture of the correlations between the steps is determined by
the statistics of the field (i.e. Gaussian or non-Gaussian)
when it is smoothed, which itself depend on the form of the
smoothing filter. The leading order term of this expansion,
equation (23), is particularly simple. It only requires that
when walks cross the barrier, they do so crossing upwards.
Therefore, it requires knowledge of only the joint distribu-
tion of the walk height and its first derivative: in appropri-
ately scaled units, these turn out to be independent of one
another (equation 17), making the analysis particularly sim-
ple. (Figure A1 and associated discussion illustrate a simple
approximation for treating the multiple upcrossings prob-
lem.)

Previous work has shown that, for Gaussian initial con-
ditions, the simplest approximation (i.e. neglecting all the
other terms associated with walks with multiple zig-zags)
leads to equation (18), which works well for all filters of cur-
rent interest, and for all barriers which are monotonic func-
tions of smoothing scale. Our equation (23) is a straightfor-
ward generalization of equation (18) to non-Gaussian fields:
again, only the bivariate distribution of height and slope is
required. In the large mass regime, our formula reduces to
the even simpler form of equation (4), which depends on the
distribution of the walk heights alone. Despite the fact that
perturbative non-Gaussian corrections individually blow up
in this regime, this result is completely non-perturbative and
exact: it simply reflects the fact that those walks that reach
the barrier in very few steps are very unlikely to have crossed
it multiple times, because of the correlations.

Our equation (23) involves an infinite series, truncation
of which is reasonable if the non-Gaussianity is weak. For this
reason, we provided another expansion, equation (25), which
is more efficient in the case of large non-Gaussianity. When
the non-Gaussian field is obtained by making a determin-
istic transformation of a Gaussian field, then the difference

between these two expansions is particularly easy to see. In
such cases, the first crossing problem becomes particularly
simple: the non-Gaussian problem can be mapped to one of
Gaussian walks crossing an effective barrier whose shape is
related to the original one (equation 33). We illustrated the
argument using a few simple examples, of which the Log-
normal is particularly instructive (Figure 1 and associated
discussion).

Equation (23) is useful for excursion set models which
assume that the initial fluctuation field was non-Gaussian;
indeed, this was the original motivation for this study. We
discussed compared our results to previous work on this topic
in Section 4.1. However, our analysis is unique in that we do
not assume that the non-Gaussianity is weak. Therefore, our
equations (23) and (25) can be used to predict the abundance
of nonlinear objects in two other cases of interest. Section 4.2
discussed the case in which halo formation depends on quan-
tities other than the initial overdensity. E.g., in the triaxial
collapse model, the relevant quantity is obtained by convolv-
ing δ with a non-Gaussian variate (equation 55), so that the
problem to be solved reduces to one of non-Gaussian walks
crossing a simple barrier. This is a rather different view of
what is usually regarded as a problem involving walks in
multiple-dimensions, so we expect this to be particularly use-
ful for future models of sheets and filaments in the cosmic
web.

The other application is to predict halo abundances
from the nonlinear (i.e. late time) rather than the initial fluc-
tuation field. Section 4.3 argued that this means that halo
bias must be nonlocal in principle, although local bias may
be a good approximation in practice. We also argued that our
formulation demonstrates self-consistency of the approach,
in the sense that applying it to the initial or the late-time
field (i.e., the Lagrangian or Eulerian fields) yields the same
estimate of halo abundances, at least at the higher masses
where equation (4) is the appropriate limit. However, this
self-consistency requires that one mass weight the Eulerian
space walks to which the excursion set argument is applied
– in the Lagrangian formulation, all walks have the same
weight (equation 57 and related discussion). It will be inter-
esting to explore if this self-consistency survives in modified
gravity models, where, because the linear theory growth fac-
tor becomes k-dependent, even just the linearly evolved field
is rather different from the initial one.

Finally, we noted in the Introduction that the funda-
mental excursion set ansatz equation (2), the primary moti-
vation for interest in barrier crossing problems in cosmology,
is known to be incorrect. This is because the excursion set
prediction for the mass of the halo in which a particle will
be at some later time is only accurate around special posi-
tions in the initial field (those around which collapse occurs;
Sheth et al. 2001) whereas the fundamental ansatz assumes
that it is accurate around all positions. In principle, this
undermines interest in the problems we have addressed in
this paper. However, as Musso & Sheth (2012) have argued,
the result of including only the relevant subset of walks over
which to average boils down to weighting some walks more
than others. E.g., the excursion set peaks patch model for
halo formation (Bond & Myers 1996; Paranjape et al. 2013)
corresponds to applying an additional weight which depends
on the slope of the walk when it crosses the barrier (what we
called v) (Musso & Sheth 2012; Paranjape & Sheth 2012).
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Since no change, other than this additional weighting term,
must be made to our upcrossing formalism, we expect our
analysis of first crossing distributions for non-Gaussian to
be useful, and to motivate further study of precisely what is
special about those positions in space around which collapse
occurs.
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APPENDIX A: MULTIPLE UPCROSSINGS

In this appendix we discuss the derivation of equation (5) in
a more formal way, and calculate the corrections one must
account for when s becomes too large, or simply if one wants
to quantify the errors introduced by the approximations we
made.

The result above can be derived in a more rigorous way
within a path integral formulation of the excursion set the-
ory, where one considers an ensemble of walks of N steps
with infinitesimal increment in variance ∆s = s/N . The
first crossing rate is by definition the fraction of walks that
crossed for the first time at the last step, over the width
of the step. Calling p(δ1, . . . , δN ) the joint probability of a
walk, this is

f(s) =
1

∆s

∫ b1

−∞
dδ1 . . .

∫ bN−1

−∞
dδN−1

∫ ∞
bN

dδN p(δ1, . . . , δN ) (A1)

where bi ≡ b(si) is the value of the barrier at the scale si =
i∆s corresponding to the i-th step.

This expression can be written as the difference of two
path integrals: a first one including all possible values of
δ1, . . . , δN−2, and a second one removing walks with at least
one δi > bi. The former is marginalized over δ1, . . . , δN−2,
and thus is just the probability of having δN−1 < bN−1 and
δN > bN = b, normalized to ∆s. This is equal to

1

∆s

∫ +∞

b′
dv

∫ b+(v−b′)∆s

b

dδN p(δN , v) , (A2)

where v ≡ (δN − δN−1)/∆s and b′ ≡ (bN − bN−1)/∆s. For
correlated steps, 〈(δN − δN−1)2〉 ∝ ∆s2: all correlators of v
and δN tend to constants, and so does p(δN , v). The ∆s→ 0
limit of this term thus returns the r.h.s. of equation (5).

The domain of the second path integral, that corrects
the error introduced by the marginalizations, is for the first
N−2 steps

∏N−2
i=1

( ∫∞
−∞ dδi−

∫∞
bi

dδi
)
−
∏N−2
i=1

∫ +∞
−∞ dδi. Up

to an overall minus sign, this is equal to

N−2∑
i=1

∫ b1

−∞
dδ1 . . .

∫ bi−1

−∞
dδi−1

∫ ∞
bi

dδi

∫ ∞
−∞

dδi+1 . . .dδN−2 , (A3)

where the i-th term of the sum removes all the trajectories

Figure A1. First crossing distribution of a barrier of constant
height δc by Gaussian walks having steps that are correlated be-

cause of TopHat smoothing of a power spectrum with P (k) ∝ k−2

(symbols with error bars). Dotted curves show fCC of equation (4)
and 2fCC; thin solid curve shows fup of equation (18); dashed

curve shows the no-correlation approximation of equation (A7);

and thick solid curve shows the back-substitution solution of
Musso & Sheth (2013).

that had crossed for the first time at si < sN−1. One can then
iterate the procedure, marginalizing the first i− 2 variables
of each term, at the cost of introducing a new term with a
sum up to i−2 to correct the error, and so on. This yields an
alternating series, in which the k-th term with k nested sums
corrects for the trajectories with k crossings miscounted in
the previous terms.

If we repeat the same considerations for each of the
k earlier crossings, introducing the velocities v1, . . . , vk in
addition to vk+1 ≡ v, we obtain the continuum limit by
replacing the k sums

∑
∆s with nested integrals over the

crossing scales s1 < · · · < sk < s ≡ sk+1. Finally, we divide
by k! and drop the constraint on the ordering of s1, . . . , sk.
This gives

f(s) =

∫ +∞

b′
dv (v − b′) p(b, v)

+

∞∑
k=1

(−1)k

k!

∫ s

0

ds1 . . .

∫ s

0

dsk f
(k)(s1, . . . , sk, s) , (A4)

where [calling s ≡ sk+1 and b(s) ≡ bk+1]

f (k) =

∫ ∞
b′

dv . . .

∫ ∞
b′1

dv1

k+1∏
j=1

(vj − b′j) p({bi, vi}) . (A5)

Musso & Sheth (2012) keep only the leading term of the full
expression for f(s), while stopping the expansion at k = 1
yields equation (8).

To see what these expressions imply, suppose that
p({bi, vi}) =

∏
i p(bi, vi); this keeps the correlation between

the walk height and its slope on each scale, but assumes
that these are uncorrelated with the height and slope on
any other scale. This makes the integrals over sk separable,
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so the result is the product of k terms:

f(s) = fup(s)

[
1 +

∑
k≥1

(−1)k

k!

k∏
j=1

fup(< s; bj)

]
, (A6)

where fup(< s) =
∫ s

0
ds fup(s), and fup is the leading term

in equation (A4) (equation 5 in the main text). If we further
assume that the barrier was constant, then each of the terms
in the product is the same, making

f(s) = fup(s) exp[−fup(< s)] . (A7)

This final expression is the same as equation (A3) of Bond
et al. (1991).

Since fup(< s) increases as s increases – and even ex-
ceeds unity at large enough s – the result of including the
extra terms is to damp fup(s) at large s. E.g., the expression
above indicates there will be an approximately 15% correc-
tion downwards at s ' δ2

c . This turns out to be slightly
larger than the actual correction (see Figure A1) because in
fact, p({bi, vi}) 6=

∏
i p(bi, vi). Although including the ad-

ditional corrections which come from correlations between
scales complicate the analysis (see Musso & Sheth 2013), we
believe the algebra above illustrates nicely how the inclusion
of multiple upcrossings will impact the result as s increases.

APPENDIX B: THE NON-GAUSSIAN PDF

The non-Gaussian probability distribution can be obtained
applying a differential operator to its Gaussian counterpart,
as

p(B; s) = eD
e−B

2/2

√
2π

(B1)

where D =
∑∞
i=3[〈∆i〉c/i!](−∂/∂B)i. Expanding the expo-

nential gives

eD = 1 +

∞∑
i=3

〈∆i〉c
i!

(−∂B)i

+
1

2!

∞∑
i,j=3

〈∆i〉c〈∆j〉c
i! j!

(−∂B)i+j + . . . . (B2)

The probability distribution can then be writ-
ten in terms of the Hermite polynomials Hn(B) ≡
eB

2/2(−∂B)ne−B
2/2, as

p(B; s) =
e−B

2/2

√
2π

[
1 +

∞∑
i=3

〈∆i〉c
i!

Hi(B)

+

∞∑
i,j=3

〈∆i〉c〈∆j〉c
2! i! j!

Hi+j(B)

+

∞∑
i,j,k=3

〈∆i〉c〈∆j〉c〈∆k〉c
3! i! j! k!

Hi+j+k(B) + . . .

]
(B3)

which is the Gram-Charlier expansion usually referred to in
the literature.

Although formally correct, this expression is not con-
venient to deal with very large masses. In this regime, B
can be so large that one might also have 〈∆3〉cB3 � 1 (see
D’Amico et al. (2011) for a detailed discussion), and in order
to make reliable predictions one cannot truncate the series
but needs to sum an infinite number of terms. In order to

avoid doing this, it is convenient to resum the series above
into an exponential and write

p(B; s) =
eW (B;s)

√
2π

, (B4)

where the function W is

W (B; s) = −B
2

2
+

∞∑
i=3

〈∆i〉c
i!

Hi(B)

+
1

2!

∞∑
i,j=3

〈∆i〉c〈∆j〉c
i! j!

hij(B)

+
1

3!

∞∑
i,j,k=3

〈∆i〉c〈∆j〉c〈∆k〉c
i! j! k!

hijk(B) + . . . (B5)

and where we have defined the modified polynomials

hij ≡ Hi+j −HiHj , (B6)

hijk ≡ Hi+j+k −HiHjHk − (Hi hjk + perms.)

= Hi+j+k + 2HiHjHk − (HiHj+k + perms.) , (B7)

hijkl ≡ Hi+j+k+l −HiHjHkHl
− (Hi hjkl + perms.)− (hij hkl + perms.) , (B8)

and so on. At a first sight this is hardly going to help, since
we are still dealing with an infinite series of terms that di-
verge when B � 1. However, one can check that hij has
degree i + j − 2, hijk has degree i + j + k − 4, and simi-
larly for higher order ones, so that W (B; s) is a better be-
haved expansion when B is large. Moreover, thanks to the
exponential representation, truncating the expansion at any
order is guaranteed to return a positive definite probability
distribution.

This result has a nice interpretation in terms of Feyn-
man diagrams. If one assigns a power of B to each external
leg and uses (−1)n〈∆n〉c/n! as vertices and -1 as propagator,
each Hermite polynomial in Eq. (B3) represents the sum of
all possible ways to connect the vertices listed in its coeffi-
cient, with all possible combinations of external and inter-
nal lines and the correct combinatorial factors. For instance,
〈∆3〉cH3(B) represents the one tree-level graph with three
external legs (whence B3) and the three one-loop graphs
with one external leg (whence −3B) containing just one cu-
bic vertex. In this language, W becomes the generator of the
connected graphs; these are obtained removing from each
Hijk··· all the disconnected pieces, that is the products of
two or more lower order connected terms.

In the large-B limit, it is consistent to approximate
this expansion keeping the leading term of each polynomial
(which is equivalent to neglecting loop diagrams order by
order). However, the smaller s gets, the higher is the order
at which one can safely truncate the expansion. Up to 4th
order one recovers

W (B; s) ' −B
2

2
+
〈∆3〉c

3!
B3 +

〈∆4〉c − 3〈∆3〉2c
4!

B4 (B9)

which is enough to describe the mass function over the range
of scales of interest, as discussed by D’Amico et al. (2011).

Here, if the combinations of connected moments which
appear in the expansion above were functions of B only, then
the resulting pdf would be self-similar in the sense used in
the previous sections. That fact that they are not, in general,
functions of the scaling variable B, means that the first term
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in equation (23) will result in an additional contribution to
f(s), which must be added to equation (18).
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