22 research outputs found

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    Nitric Oxide Mediates Stretch-Induced Ca2+ Release via Activation of Phosphatidylinositol 3-Kinase-Akt Pathway in Smooth Muscle

    Get PDF
    Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level.Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle

    APPL Proteins FRET at the BAR: Direct Observation of APPL1 and APPL2 BAR Domain-Mediated Interactions on Cell Membranes Using FRET Microscopy

    Get PDF
    Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies

    Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels

    Get PDF
    Stroke is a long-term disability and one of the leading causes of death. However, no successful therapeutic intervention is available for the majority of stroke patients. In this study, we explored a traditional Chinese medicine Baifuzi (Typhonium giganteum Engl.). We show, at first, that the ethanol extract of Baifuzi exerts neuroprotective effects against brain damage induced by transient global or focal cerebral ischemia in rats and mice. Second, the extract activated large-conductance Ca2+-activated K+ channel (BKCa) channels, and BKCa channel blockade suppressed the neuroprotection of the extract, suggesting that the BKCa is the molecular target of Baifuzi. Third, Baifuzi cerebroside (Baifuzi-CB), purified from its ethanol extract, activated BKCa channels in a manner similar to that of the extract. Fourth, the stress axis hormone-regulated exon (STREX) domain of the BKCa channel directly interacted with Baifuzi-CB, and its deletion suppressed channel activation by Baifuzi-CB. These results indicate that Baifuzi-CB activated the BKCa channel through its direct interaction with the STREX domain of the channel and suggests that Baifuzi-CB merits exploration as a potential therapeutic agent for treating brain ischemia

    The organelle of differentiation in embryos: the cell state splitter

    Full text link
    corecore