25 research outputs found

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Cross-translational studies in human and Drosophila identify markers of sleep loss

    Get PDF
    Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss

    Neurotransmitter Transporter-Like: A Male Germline-specific SLC6 Transporter Required for Drosophila Spermiogenesis

    Get PDF
    The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3′ end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism

    A Glial Variant of the Vesicular Monoamine Transporter Is Required To Store Histamine in the Drosophila Visual System

    Get PDF
    Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems

    Inducing sleep by remote control facilitates memory consolidation in Drosophila.

    No full text
    Sleep is believed to play an important role in memory consolidation. We induced sleep on demand by expressing the temperature-gated nonspecific cation channel Transient receptor potential cation channel (UAS-TrpA1) in neurons, including those with projections to the dorsal fan-shaped body (FB). When the temperature was raised to 31°C, flies entered a quiescent state that meets the criteria for identifying sleep. When sleep was induced for 4 hours after a massed-training protocol for courtship conditioning that is not capable of inducing long-term memory (LTM) by itself, flies develop an LTM. Activating the dorsal FB in the absence of sleep did not result in the formation of LTM after massed training

    Foraging alters resilience/vulnerability to sleep disruption and starvation in Drosophila.

    No full text
    Recent human studies suggest that genetic polymorphisms allow an individual to maintain optimal cognitive functioning during sleep deprivation. If such polymorphisms were not associated with additional costs, selective pressures would allow these alleles to spread through the population such that an evolutionary alternative to sleep would emerge. To determine whether there are indeed costs associated with resiliency to sleep loss, we challenged natural allelic variants of the foraging gene (for) with either sleep deprivation or starvation. Flies with high levels of Protein Kinase G (PKG) (for(R)) do not display deficits in short-term memory following 12 h of sleep deprivation. However, short-term memory is significantly disrupted when for(R) flies are starved overnight. In contrast, flies with low levels of PKG (for(s), for(s2)) show substantial deficits in short-term memory following sleep deprivation but retain their ability to learn after 12 h of starvation. We found that for(R) phenotypes could be largely recapitulated in for(s) flies by selectively increasing the level of PKG in the α/β lobes of the mushroom bodies, a structure known to regulate both sleep and memory. Together, these data indicate that whereas the expression of for may appear to provide resilience in one environmental context, it may confer an unexpected vulnerability in other situations. Understanding how these tradeoffs confer resilience or vulnerability to specific environmental challenges may provide additional clues as to why an evolutionary alternative to sleep has not emerged
    corecore