116 research outputs found

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions

    Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments

    Get PDF
    Most reports of a correlation between Pleistocene climate and geomagnetic field intensity rely strongly on the assumption that sediment natural remanent magnetic (NRM) intensity provides a record of geomagnetic field strength and is not sensitive to local changes in properties of the sediment. Critical assessment of relevant data presented here and elsewhere from deep-sea sediment cores shows that a pronounced dependence of NRM intensity on sediment composition can occur which implies that this assumption is unlikely to be generally valid. As sediment composition often reflects varying depositional conditions induced by climatic change, the significance of correlations proposed between Pleistocene palaeomagnetism and climatic indicators in deep-sea sediments may be less dramatic than sometimes supposed

    Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder

    Get PDF
    Recepteur d'Origine Nantais (RON) is a distinct receptor tyrosine kinase in the c-met proto-oncogene family. We examined the mutational and expression patterns of RON in eight human uroepithelial cell lines. Biological effects of RON overexpression on cancer cells were investigated in vitro, and the prognostic significance of RON and/or c-met protein (MET) expression was analysed in a bladder cancer cohort (n=183). There was no evidence of mutation in the kinase domain of RON. Overexpression of RON using an inducible Tet-off system induced increased cell proliferation, motility, and antiapoptosis. Immunohistochemical analysis showed that RON was overexpressed in 60 cases (32.8%) of primary tumours, with 14 (23.3%) showing a high level of expression. Recepteur d'Origine Nantais expression was positively associated with histological grading, larger size, nonpapillary contour, and tumour stage (all P<0.01). In addition, MET was overexpressed in 82 cases (44.8%). Co-expressed RON and MET was significantly associated with decreased overall survival (P=0.005) or metastasis-free survival (P=0.01) in 35 cases (19.1%). Recepteur d'Origine Nantais-associated signalling may play an important role in the progression of human bladder cancer. Evaluation of RON and MET expression status may identify a subset of bladder-cancer patients who require more intensive treatment

    Volcanic Gases:Silent Killers

    Get PDF
    This is the accepted manuscript. The final version is available at http://link.springer.com/chapter/10.1007%2F11157_2015_14.Volcanic gases are insidious and often overlooked hazards. The effects of volcanic gases on life may be direct, such as asphyxiation, respiratory diseases and skin burns; or indirect, e.g. regional famine caused by the cooling that results from the presence of sulfate aerosols injected into the stratosphere during explosive eruptions. Although accounting for fewer fatalities overall than some other forms of volcanic hazards, history has shown that volcanic gases are implicated frequently in small-scale fatal events in diverse volcanic and geothermal regions. In order to mitigate risks due to volcanic gases, we must identify the challenges. The first relates to the difficulty of monitoring and hazard communication: gas concentrations may be elevated over large areas and may change rapidly with time. Developing alert and early warning systems that will be communicated in a timely fashion to the population is logistically difficult. The second challenge focuses on education and understanding risk. An effective response to warnings requires an educated population and a balanced weighing of conflicting cultural beliefs or economic interests with risk. In the case of gas hazards, this may also mean having the correct personal protection equipment, knowing where to go in case of evacuation and being aware of increased risk under certain sets of meteorological conditions. In this chapter we review several classes of gas hazard, the risks associated with them, potential risk mitigation strategies and ways of communicating risk. We discuss carbon dioxide flows and accumulations, including lake overturn events which have accounted for the greatest number of direct fatalities, the hazards arising from the injection of sulfate aerosol into the troposphere and into the stratosphere. A significant hazard facing the UK and northern Europe is a “Laki”-style eruption in Iceland, which will be associated with increased risk of respiratory illness and mortality due to poor air quality when gases and aerosols are dispersed over Europe. We discuss strategies for preparing for a future Laki style event and implications for society

    Comprehensive Biostatistical Analysis of CpG Island Methylator Phenotype in Colorectal Cancer Using a Large Population-Based Sample

    Get PDF
    The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors

    The landscape of somatic copy-number alteration across human cancers

    Get PDF
    available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833

    Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre

    Get PDF
    Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen
    • …
    corecore