107 research outputs found

    Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer

    Get PDF
    The MUC4 mucin is a high molecular weight, membrane-bound, and highly glycosylated protein. It is a multi-domain protein that is putatively cleaved into a large mucin-like subunit (MUC4Ξ±) and a C-terminal growth-factor like subunit (MUC4Ξ²). MUC4 plays critical roles in physiological and pathological conditions and is aberrantly overexpressed in several cancers, including those of the pancreas, cervix, breast and lung. It is also a potential biomarker for the diagnosis, prognosis and progression of several malignancies. Further, MUC4 plays diverse functional roles in cancer initiation and progression as evident from its involvement in oncogenic transformation, proliferation, inhibition of apoptosis, motility and invasion, and resistance to chemotherapy in human cancer cells. We have previously generated a monoclonal antibody 8G7, which is directed against the TR region of MUC4, and has been extensively used to study the expression of MUC4 in several malignancies. Here, we describe the generation of anti-MUC4 antibodies directed against the non-TR regions of MUC4. Recombinant glutathione-S-transferase (GST)-fused MUC4Ξ± fragments, both upstream (MUC4Ξ±-N-Ter) and downstream (MUC4Ξ±-C-Ter) of the TR domain, were used as immunogens to immunize BALB/c mice. Following cell fusion, hybridomas were screened using the aforementioned recombinant proteins ad lysates from human pancreatic cell lines. Three anti MUC4Ξ±-N-Ter and one anti-MUC4Ξ±-C-Ter antibodies were characterized by several inmmunoassays including enzyme-linked immunosorbent assay (ELISA), immunoblotting, immunofluorescene, flow cytometry and immunoprecipitation using MUC4 expressing human pancreatic cancer cell lines. The antibodies also reacted with the MUC4 in human pancreatic tumor sections in immunohistochemical analysis. The new domain-specific anti-MUC4 antibodies will serve as important reagents to study the structure-function relationship of MUC4 domains and for the development of MUC4-based diagnostics and therapeutics

    Your Resting Brain CAREs about Your Risky Behavior

    Get PDF
    Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI) and resting state functional connectivity (RSFC) methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate). We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion) was associated with 1) stronger positive functional connectivity between right inferior frontal gyrus (IFG) and right insula, and 2) weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that individual differences in attitudes toward risk-taking are reflected in the brain's functional architecture and may have implications for engaging in real-world risky behaviors

    Multi-level analysis of electronic health record adoption by health care professionals: A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The electronic health record (EHR) is an important application of information and communication technologies to the healthcare sector. EHR implementation is expected to produce benefits for patients, professionals, organisations, and the population as a whole. These benefits cannot be achieved without the adoption of EHR by healthcare professionals. Nevertheless, the influence of individual and organisational factors in determining EHR adoption is still unclear. This study aims to assess the unique contribution of individual and organisational factors on EHR adoption in healthcare settings, as well as possible interrelations between these factors.</p> <p>Methods</p> <p>A prospective study will be conducted. A stratified random sampling method will be used to select 50 healthcare organisations in the Quebec City Health Region (Canada). At the individual level, a sample of 15 to 30 health professionals will be chosen within each organisation depending on its size. A semi-structured questionnaire will be administered to two key informants in each organisation to collect organisational data. A composite adoption score of EHR adoption will be developed based on a Delphi process and will be used as the outcome variable. Twelve to eighteen months after the first contact, depending on the pace of EHR implementation, key informants and clinicians will be contacted once again to monitor the evolution of EHR adoption. A multilevel regression model will be applied to identify the organisational and individual determinants of EHR adoption in clinical settings. Alternative analytical models would be applied if necessary.</p> <p>Results</p> <p>The study will assess the contribution of organisational and individual factors, as well as their interactions, to the implementation of EHR in clinical settings.</p> <p>Conclusions</p> <p>These results will be very relevant for decision makers and managers who are facing the challenge of implementing EHR in the healthcare system. In addition, this research constitutes a major contribution to the field of knowledge transfer and implementation science.</p

    Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer

    Get PDF
    MUC4 is a large, heavily glycosylated transmembrane mucin, that is implicated in the pathogenesis of various types of cancers. To date, no extensive study has been done to check the expression and functional significance of MUC4 in different types of gastric adenocarcinomas. Here, we report the expression profile of MUC4 in gastric adenocarcinomas and its function in poorly differentiated gastric non-signet ring cell carcinoma (non-SRCC) type cells. Immunohistochemical analysis using tissue microarray (TMA) showed a significant difference in MUC4 expression between normal adjacent (n=45) and gastric adenocarcinoma (n=83; P<0.001). MUC4 expression was not associated with tumour type, stage or with the degree of differentiation. To gain further insight into the significance of MUC4 expression in gastric non-SRCC cells, MUC4 was ectopically expressed in AGS, a poorly differentiated gastric non-signet ring cell line. The MUC4 overexpressing cells (AGS-MUC4) showed a significant increase (P<0.005) in cell motility and a decrease in cellular aggregation as compared with the vector-transfected cells. Furthermore, in vivo tumorigenicity analysis revealed that animals transplanted with the MUC4 overexpressing cells (AGS-MUC4) had a greater incidence of tumours (83%) in comparison to empty vector control (17%). In addition, the expression of MUC4 resulted in enhanced expression of total cellular ErbB2 and phosphorylated ErbB2. In conclusion, our results showed that MUC4 is overexpressed in gastric adenocarcinoma tissues, and that it has a role in promoting aggressive properties in poorly differentiated gastric non-SRCC cells through the activation of the ErbB2 oncoprotein

    Sharing vocabularies: towards horizontal alignment of values-driven business functions

    Get PDF
    This paper highlights the emergence of different β€˜vocabularies’ that describe various values-driven business functions within large organisations and argues for improved horizontal alignment between them. We investigate two established functions that have long-standing organisational histories: Ethics and Compliance (E&C) and Corporate Social Responsibility (CSR). By drawing upon research on organisational alignment, we explain both the need for and the potential benefit of greater alignment between these values-driven functions. We then examine the structural and socio-cultural dimensions of organisational systems through which E&C and CSR horizontal alignment can be coordinated to improve synergies, address tensions, and generate insight to inform future research and practice in the field of Business and Society. The paper concludes with research questions that can inform future scholarly research and a practical model to guide organizations’ efforts towards inter-functional, horizontal alignment of values-driven organizational practice

    On the way to large-scale and high-resolution brain-chip interfacing

    Get PDF
    Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted β€œin vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs

    Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation

    Get PDF
    Younger adults with anxiety disorders are known to show an attentional bias toward negative information. Little is known regarding the role of biased attention in anxious older adults, and even less is known about the neural substrates of any such bias. Functional magnetic resonance imaging (fMRI) was used to assess the mechanisms of attentional bias in late life by contrasting predictions of a top-down model emphasizing deficient prefrontal cortex (PFC) control and a bottom-up model emphasizing amygdalar hyperreactivity. In all, 16 older generalized anxiety disorder (GAD) patients (mean age=66 years) and 12 non-anxious controls (NACs; mean age=67 years) completed the emotional Stroop task to assess selective attention to negative words. Task-related fMRI data were concurrently acquired. Consistent with hypotheses, GAD participants were slower to identify the color of negative words relative to neutral, whereas NACs showed the opposite bias, responding more quickly to negative words. During negative words (in comparison with neutral), the NAC group showed PFC activations, coupled with deactivation of task-irrelevant emotional processing regions such as the amygdala and hippocampus. By contrast, GAD participants showed PFC decreases during negative words and no differences in amygdalar activity across word types. Across all participants, greater attentional bias toward negative words was correlated with decreased PFC recruitment. A significant positive correlation between attentional bias and amygdala activation was also present, but this relationship was mediated by PFC activity. These results are consistent with reduced prefrontal attentional control in late-life GAD. Strategies to enhance top-down attentional control may be particularly relevant in late-life GAD treatment

    The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis

    Get PDF
    Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria), coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1) the inflammatory process and oxidative stress, 2) intestinal permeability, 3) the composition of the mucus layer, 4) the resistance to harmful stimuli and epithelial repair mechanisms, and 5) the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis

    Probing of Exosites Leads to Novel Inhibitor Scaffolds of HCV NS3/4A Proteinase

    Get PDF
    Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors.To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir Ξ±-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of Ξ±-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified.Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals
    • …
    corecore