239 research outputs found

    Accurate Prediction of DnaK-Peptide Binding via Homology Modelling and Experimental Data

    Get PDF
    Molecular chaperones are essential elements of the protein quality control machinery that governs translocation and folding of nascent polypeptides, refolding and degradation of misfolded proteins, and activation of a wide range of client proteins. The prokaryotic heat-shock protein DnaK is the E. coli representative of the ubiquitous Hsp70 family, which specializes in the binding of exposed hydrophobic regions in unfolded polypeptides. Accurate prediction of DnaK binding sites in E. coli proteins is an essential prerequisite to understand the precise function of this chaperone and the properties of its substrate proteins. In order to map DnaK binding sites in protein sequences, we have developed an algorithm that combines sequence information from peptide binding experiments and structural parameters from homology modelling. We show that this combination significantly outperforms either single approach. The final predictor had a Matthews correlation coefficient (MCC) of 0.819 when assessed over the 144 tested peptide sequences to detect true positives and true negatives. To test the robustness of the learning set, we have conducted a simulated cross-validation, where we omit sequences from the learning sets and calculate the rate of repredicting them. This resulted in a surprisingly good MCC of 0.703. The algorithm was also able to perform equally well on a blind test set of binders and non-binders, of which there was no prior knowledge in the learning sets. The algorithm is freely available at http://limbo.vib.be

    A critique of the World Resources Institute's report "Pesticides and the immune system: the public health risks".

    Get PDF
    A recent World Resources Institute (WRI) report concluded that pesticides are a likely cause of immune suppression for millions of people throughout the world. The gravity of this conclusion motivated us to review the scientific evidence cited in the report. The predominant human evidence came from cross-sectional studies conducted in the former Soviet Union.These studies were difficult to evaluate due to incomplete reporting and had obvious limitations in terms of subject selection, exposure assessment,lack of quality control, statistical analysis, adequacy of the comparison group, and confounding. The toxicologic evidence was comprised mainly of acute high-dose studies in which the exposure conditions resulted in systemic toxicity. The relevance of these studies to effects at typical human exposure levels is questionable. We did not find consistent, credible evidence to support the conclusion of widespread pesticide-related immune suppression. Nonetheless, the WRI report is an important document because it focuses attention on a potentially important issue for future research and brings a substantial literature of foreign language studies to the attention of Western scientists

    Chemogenetic fingerprinting by analysis of cellular growth dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal in chemical biology is the elucidation of on- and off-target effects of drugs and biocides. To this aim chemogenetic screens that quantify drug induced changes in cellular fitness, typically taken as changes in composite growth, is commonly applied.</p> <p>Results</p> <p>Using the model organism <it>Saccharomyces cerevisiae </it>we here report that resolving cellular growth dynamics into its individual components, growth lag, growth rate and growth efficiency, increases the predictive power of chemogenetic screens. Both in terms of drug-drug and gene-drug interactions did the individual growth variables capture distinct and only partially overlapping aspects of cell physiology. In fact, the impact on cellular growth dynamics represented functionally distinct chemical fingerprints.</p> <p>Discussion</p> <p>Our findings suggest that the resolution and quantification of all facets of growth increases the informational and interpretational output of chemogenetic screening. Hence, by facilitating a physiologically more complete analysis of gene-drug and drug-drug interactions the here reported results may simplify the assignment of mode-of-action to orphan bioactive compounds.</p

    Wnt5a Increases Cardiac Gene Expressions of Cultured Human Circulating Progenitor Cells via a PKC Delta Activation

    Get PDF
    Background: Wnt signaling controls the balance between stem cell proliferation and differentiation and body patterning throughout development. Previous data demonstrated that non-canonical Wnts (Wnt5a, Wnt11) increased cardiac gene expression of circulating endothelial progenitor cells (EPC) and bone marrow-derived stem cells cultured in vitro. Since previous studies suggested a contribution of the protein kinase C (PKC) family to the Wnt5a-induced signalling, we investigated which PKC isoforms are activated by non-canonical Wnt5a in human EPC. Methodology/Principal Findings: Immunoblot experiments demonstrated that Wnt5a selectively activated the novel PKC isoform, PKC delta, as evidenced by phosphorylation and translocation. In contrast, the classical Ca2+-dependent PKC isoforms, PKC alpha and beta2, and one of the other novel PKC isoforms, PKC epsilon, were not activated by Wnt5a. The PKC delta inhibitor rottlerin significantly blocked co-culture-induced cardiac differentiation in vitro, whereas inhibitors directed against the classical Ca2+-dependent PKC isoforms or a PKC epsilon-inhibitory peptide did not block cardiac differentiation. In accordance, EPC derived from PKC delta heterozygous mice exhibited a significant reduction of Wnt5a-induced cardiac gene expression compared to wild type mice derived EPC. Conclusions/Significance: These data indicate that Wnt5a enhances cardiac gene expressions of EPC via an activation of PKC delta

    Older adults' beliefs about physician-estimated life expectancy: a cross-sectional survey

    Get PDF
    BACKGROUND: Estimates of life expectancy assist physicians and patients in medical decision-making. The time-delayed benefits for many medical treatments make an older adult's life expectancy estimate particularly important for physicians. The purpose of this study is to assess older adults' beliefs about physician-estimated life expectancy. METHODS: We performed a mixed qualitative-quantitative cross-sectional study in which 116 healthy adults aged 70+ were recruited from two local retirement communities. We interviewed them regarding their beliefs about physician-estimated life expectancy in the context of a larger study on cancer screening beliefs. Semi-structured interviews of 80 minutes average duration were performed in private locations convenient to participants. Demographic characteristics as well as cancer screening beliefs and beliefs about life expectancy were measured. Two independent researchers reviewed the open-ended responses and recorded the most common themes. The research team resolved disagreements by consensus. RESULTS: This article reports the life-expectancy results portion of the larger study. The study group (n = 116) was comprised of healthy, well-educated older adults, with almost a third over 85 years old, and none meeting criteria for dementia. Sixty-four percent (n = 73) felt that their physicians could not correctly estimate their life expectancy. Sixty-six percent (n = 75) wanted their physicians to talk with them about their life expectancy. The themes that emerged from our study indicate that discussions of life expectancy could help older adults plan for the future, maintain open communication with their physicians, and provide them knowledge about their medical conditions. CONCLUSION: The majority of the healthy older adults in this study were open to discussions about life expectancy in the context of discussing cancer screening tests, despite awareness that their physicians' estimates could be inaccurate. Since about a third of participants perceived these discussions as not useful or even harmful, physicians should first ascertain patients' preferences before discussing their life expectancies

    Active Wnt signaling in response to cardiac injury

    Get PDF
    Although the contribution of Wnt signaling in infarct healing is suggested, its exact role after myocardial infarction (MI) still needs to be unraveled. We evaluated the cardiac presence of active Wnt signaling in vivo following MI, and investigated in which cell types active Wnt signaling was present by determining Axin2 promoter-driven LacZ expression. C57BL/6 Axin2-LacZ reporter mice were sacrificed at days 0, 1, 3, 7, 14, and 21 after LAD ligation. Hearts were snap-frozen for immunohistochemistry (IHC) or enzymatically digested to obtain a single cell suspension for flow cytometric analysis. For both FACS and IHC, samples were stained for β-galactosidase and antibodies against Sca-1, CD31, ckit, and CD45. Active Wnt signaling increased markedly in the myocardium, from 7 days post-MI onwards. Using Sca-1 and CD31, to identify progenitor and endothelial cells, a significant increase in LacZ+ cells was found at 7 and 14 days post-MI. LacZ+ cells also increased in the ckit+ and CD45+ cell population. IHC revealed LacZ+ cells co-expressing Sca, CD31, CD45, vWF, and αSMA in the border zone and the infarcted area. Wnt signaling increased significantly after MI in Sca+- and CD31+-expressing cells, suggesting involvement of Wnt signaling in resident Sca+ progenitor cells, as well as endothelial cells. Moreover, active Wnt signaling was present in ckit+ cells, leukocytes, and fibroblast. Given its broad role during the healing phase after cardiac injury, additional research seems warranted before a therapeutic approach on Wnt to enhance cardiac regeneration can be carried out safely

    Validating the Johns Hopkins ACG Case-Mix System of the elderly in Swedish primary health care

    Get PDF
    BACKGROUND: Individualbased measures for comorbidity are of increasing importance for planning and funding health care services. No measurement for individualbased healthcare costs exist in Sweden. The aim of this study was to validate the Johns Hopkins ACG Case-Mix System's predictive value of polypharmacy (regular use of 4 or more prescription medicines) used as a proxy for health care costs in an elderly population and to study if the prediction could be improved by adding variables from a population based study i.e. level of education, functional status indicators and health perception. METHODS: The Johns Hopkins ACG Case-Mix System was applied to primary health care diagnoses of 1402 participants (60–96 years) in a cross-sectional community based study in Karlskrona, Sweden (the Swedish National study on Ageing and Care) during a period of two years before they took part in the study. The predictive value of the Johns Hopkins ACG Case-Mix System was modeled against the regular use of 4 or more prescription medicines, also using age, sex, level of education, instrumental activity of daily living- and measures of health perception as covariates. RESULTS: In an exploratory biplot analysis the Johns Hopkins ACG Case-Mix System, was shown to explain a large part of the variance for regular use of 4 or more prescription medicines. The sensitivity of the prediction was 31.9%, whereas the specificity was 88.5%, when the Johns Hopkins ACG Case-Mix System was adjusted for age. By adding covariates to the model the sensitivity was increased to 46.3%, with a specificity of 90.1%. This increased the number of correctly classified by 5.6% and the area under the curve by 11.1%. CONCLUSION: The Johns Hopkins ACG Case-Mix System is an important factor in measuring comorbidity, however it does not reflect an individual's capability to function despite a disease burden, which has importance for prediction of comorbidity. In this study we have shown that information on such factors, which can be obtained from short questionnaires increases the probability to correctly predict an individual's use of resources, such as medications

    Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    Get PDF
    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naive cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGF beta/SMAD (transforming growth factor-beta/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naive cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.Fapesp-grant number 2012/04194-1, 2013/05172-4, 2014/24400-0 and 2015/10821-7, CNPq-grant number 150447/2013-2 and 471512/2013-3 and PRODOC-grant no 3193-32/2010. Work in the lab of KS Smalley was supported by the National Institutes of Health grants R01 CA161107, R21 CA198550, and Skin SPORE grant P50 CA168536info:eu-repo/semantics/publishedVersio

    Narrowing the knowledge gaps for melanoma

    Get PDF
    Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies
    corecore