3,302 research outputs found

    The evolution of the number density of compact galaxies

    Full text link
    We compare the number density of compact (small size) massive galaxies at low and high redshift using our Padova Millennium Galaxy and Group Catalogue (PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at z=1-2. The number density of local compact galaxies with luminosity weighted (LW) ages compatible with being already passive at high redshift is compared with the density of compact passive galaxies observed at high-z. Our results place an upper limit of a factor ~2 to the evolution of the number density and are inconsistent with a significant size evolution for most of the compact galaxies observed at high-z. The evolution may be instead significant (up to a factor 5) for the most extreme, ultracompact galaxies. Considering all compact galaxies, regardless of LW age and star formation activity, a minority of local compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the secular decrease of the galaxy stellar mass due to simple stellar evolution may in some cases be a non-negligible factor in the context of the evolution of the mass-size relation, and we caution that passive evolution in mass should be taken into account when comparing samples at different redshifts.Comment: ApJ in pres

    Higgs signals and hard photons at the Next Linear Collider: the ZZZZ-fusion channel in the Standard Model

    Get PDF
    In this paper, we extend the analyses carried out in a previous article for WWWW-fusion to the case of Higgs production via ZZZZ-fusion within the Standard Model at the Next Linear Collider, in presence of electromagnetic radiation due real photon emission. Calculations are carried out at tree-level and rates of the leading order (LO) processes e^+e^-\rightarrow e^+e^- H \ar e^+e^- b\bar b and e^+e^-\rightarrow e^+e^- H \ar e^+e^- WW \ar e^+e^- \mathrm{jjjj} are compared to those of the next-to-leading order (NLO) reactions e^+e^-\rightarrow e^+e^- H (\gamma)\ar e^+e^- b\bar b \gamma and e^+e^-\rightarrow e^+e^- H (\gamma)\ar e^+e^- WW (\gamma) \ar e^+e^- \mathrm{jjjj}\gamma, in the case of energetic and isolated photons.Comment: 12 pages, LaTeX, 5 PostScript figures embedded using epsfig and bitmapped at 100dpi, complete paper including high definition figures available at ftp://axpa.hep.phy.cam.ac.uk/stefano/cavendish_9611.ps or at http://www.hep.phy.cam.ac.uk/theory/papers

    Momentum dependence of orbital excitations in Mott-insulating titanates

    Full text link
    High-resolution resonant inelastic x-ray scattering has been used to determine the momentum dependence of orbital excitations in Mott-insulating LaTiO3_3 and YTiO3_3 over a wide range of the Brillouin zone. The data are compared to calculations in the framework of lattice-driven and superexchange-driven orbital ordering models. A superexchange model in which the experimentally observed modes are attributed to two-orbiton excitations yields the best description of the data.Comment: to appear in PR

    Facile Electron Transfer in Atomically Coupled Heterointerface for Accelerated Oxygen Evolution

    Get PDF
    An efficient and cost-effective approach for the development of advanced cata-lysts has been regarded as a sustainable way for green energy utilization. The general guideline to design active and efficient catalysts for oxygen evolution reaction (OER) is to achieve high intrinsic activity and the exposure of more density of the interfacial active sites. The heterointerface is one of the most attractive ways that plays a key role in electrochemical water oxidation. Herein, atomically cluster-based heterointerface catalysts with strong metal support interaction (SMSI) between WMn2O4 and TiO2 are designed. In this case, the WMn2O4 nanoflakes are uniformly decorated by TiO2 particles to create electronic effect on WMn2O4 nanoflakes as confirmed by X-ray absorption near edge fine structure. As a result, the engineered heterointerface requires an OER onset overpotential as low as 200 mV versus reversible hydrogen electrode, which is stable for up to 30 h of test. The outstanding performance and long-term durability are due to SMSI, the exposure of interfacial active sites, and accelerated reaction kinetics. To confirm the synergistic interaction between WMn2O4 and TiO2, and the modification of the electronic structure, high-resolution transmission electron microscopy (HR-TEM), X-ray photoemission spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) are used

    Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes

    Get PDF
    Connes' functional formula of the Riemannian distance is generalized to the Lorentzian case using the so-called Lorentzian distance, the d'Alembert operator and the causal functions of a globally hyperbolic spacetime. As a step of the presented machinery, a proof of the almost-everywhere smoothness of the Lorentzian distance considered as a function of one of the two arguments is given. Afterwards, using a CC^*-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures giving rise to a Lorentzian version of part of Connes' noncommutative geometry. The generalized noncommutative spacetime consists of a direct set of Hilbert spaces and a related class of CC^*-algebras of operators. In each algebra a convex cone made of self-adjoint elements is selected which generalizes the class of causal functions. The generalized events, called {\em loci}, are realized as the elements of the inductive limit of the spaces of the algebraic states on the CC^*-algebras. A partial-ordering relation between pairs of loci generalizes the causal order relation in spacetime. A generalized Lorentz distance of loci is defined by means of a class of densely-defined operators which play the r\^ole of a Lorentzian metric. Specializing back the formalism to the usual globally hyperbolic spacetime, it is found that compactly-supported probability measures give rise to a non-pointwise extension of the concept of events.Comment: 43 pages, structure of the paper changed and presentation strongly improved, references added, minor typos corrected, title changed, accepted for publication in Reviews in Mathematical Physic

    GASP II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201

    Get PDF
    This paper presents a spatially-resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying the environment of JO201, we find that it is moving through the dense intra-cluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intra-cluster medium and the galaxy's mass, projected position and velocity within the cluster, we estimate that JO201 must so far have lost ~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk, accompanied by large projected tails of ionised (Halpha) gas, composed of kinematically cold (velocity dispersion <40km/s) star-forming knots and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates with the stars out to ~6 kpc but in the disk outskirts becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component, resulting from intense face-on RPS happening along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas, and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.Comment: ApJ, revised version after referee comments, 15 pages, 16 figures. The interactive version of Figure 9 can be viewed at web.oapd.inaf.it/gasp/publications.htm

    Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy

    Full text link
    It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT. This casts new light on the fundamental question whether the volume propotionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordeal algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper. It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons. The present paper is part of a project aimed at elucidating the enormous physical range of "modular localization". The latter does not only extend from standard Hamitonian heat bath thermal states to thermal aspects of causal- or event- horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in this form the paper will appear in Foundations of Physic

    Absolute light yield of the EJ-204 plastic scintillator

    Full text link
    The absolute light yield of a scintillator, defined as the number of scintillation photons produced per unit energy deposited, is a useful quantity for scintillator development, research, and applications. Yet, literature data on the absolute light yield of organic scintillators are limited. The goal of this work is to assess the suitability of the EJ-204 plastic scintillator from Eljen Technology to serve as a reference standard for measurements of the absolute light yield of organic scintillators. Four EJ-204 samples were examined: two manufactured approximately four months prior and stored in high-purity nitrogen, and two aged approximately eleven years and stored in ambient air. The scintillator response was measured using a large-area avalanche photodiode calibrated using low energy γ\gamma-ray and X-ray sources. The product of the quantum efficiency of the photodetector and light collection efficiency of the housing was characterized using an experimentally-benchmarked optical photon simulation. The average absolute light yield of the fresh samples, 9100 ±\pm 400 photons per MeV, is lower than the manufacturer-reported value of 10400 photons per MeV. Moreover, the aged samples demonstrated significantly lower light yields, deviating from the manufacturer specification by as much as 26\%. These results are consistent with recent work showcasing environmental aging in plastic scintillators and suggest that experimenters should use caution when deploying plastic scintillators in photon counting applications.Comment: 12 pages, 9 figure

    Quantum Scalar Field on the Massless (2+1)-Dimensional Black Hole Background

    Get PDF
    The behavior of a quantum scalar field is studied in the metric ground state of the (2+1)-dimensional black hole of Ba\~nados, Teitelboim and Zanelli which contains a naked singularity. The one-loop BTZ partition function and the associate black hole effective entropy, the expectation value of the quantum fluctuation as well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the ζ\zeta-function procedure. This is done for all values of the coupling with the curvature, the mass of the field and the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state, by solving the semiclassical Einstein equations. It is finally argued that, within the framework of the 1/N expansion, the Cosmic Censorship Hypothesis is implemented since the naked singularity of the ground state metric is shielded by an event horizon created by the back reaction.Comment: 18 pages, RevTeX, no figures, minor changes, final version accepted for publication in Phys. Rev.
    corecore