524 research outputs found

    Progressive MS trials: Lessons learned.

    Get PDF
    Up to very recently, no treatments had proved effective in progressive multiple sclerosis (MS). In 2016, four drugs, two tested in phase 3 and two in phase 2 trials, showed a beneficial effect in primary or secondary progressive MS. Although this could indicate a turning point in progressive MS treatment, most of these successes have been modest and mainly restricted to patients with active inflammation, in the context of trials with powerful anti-inflammatory agents. This paper summarises these reasons, particularly focusing on the main lessons learned for the design of future trials. First, a drug’s mechanism of action should tackle the specific pathogenic mechanisms that characterise progressive MS. Second, trial populations where new drugs are to be tested should be carefully chosen, possibly including younger patients with shorter disease durations, which have greater chances of showing active deterioration during the trial, therefore increasing the power to detect treatment effects. Third, outcome measures used in future phase 2 and phase 3 trials should be highly sensitive and be accompanied by smart trial designs

    Precision Masses of the low-mass binary system GJ 623

    Get PDF
    We have used Aperture Masking Interferometry and Adaptive Optics (AO) at the Palomar 200'' to obtain precise mass measurements of the binary M dwarf GJ 623. AO observations spread over 3 years combined with a decade of radial velocity measurements constrain all orbital parameters of the GJ 623 binary system accurately enough to critically challenge the models. The dynamical masses measured are m_{1}=0.371\pm0.015 M_{\sun} (4%) and m_{2}=0.115\pm0.0023 M_{\sun} (2%) for the primary and the secondary respectively. Models are not consistent with color and mass, requiring very low metallicities.Comment: 7 pages, 5 figures. Accepted for Ap

    T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis

    Get PDF
    Objectives: Prediction of long term clinical outcome in patients with primary progressive multiple sclerosis (PPMS) using imaging has important clinical implications, but remains challenging. We aimed to determine whether spatial location of T2 and T1 brain lesions predicts clinical progression during a 10-year follow-up in PPMS. Methods: Lesion probability maps of the T2 and T1 brain lesions were generated using the baseline scans of 80 patients with PPMS who were clinically assessed at baseline and then after 1, 2, 5 and 10 years. For each patient, the time (in years) taken before bilateral support was required to walk (time to event (TTE)) was used as a measure of progression rate. The probability of each voxel being ‘lesional’ was correlated with TTE, adjusting for age, gender, disease duration, centre and spinal cord cross sectional area, using a multiple linear regression model. To identify the best, independent predictor of progression, a Cox regression model was used. Results: A significant correlation between a shorter TTE and a higher probability of a voxel being lesional on T2 scans was found in the bilateral corticospinal tract and superior longitudinal fasciculus, and in the right inferior fronto-occipital fasciculus (p<0.05). The best predictor of progression rate was the T2 lesion load measured along the right inferior fronto-occipital fasciculus (p=0.016, hazard ratio 1.00652, 95% CI 1.00121 to 1.01186). Conclusion: Our results suggest that the location of T2 brain lesions in the motor and associative tracts is an important contributor to the progression of disability in PPMS, and is independent of spinal cord involvement

    Color--Magnitude Diagram and Luminosity Function of M4 Near the Hydrogen-Burning Limit

    Get PDF
    A proper-motion separation of M4 members from field stars, using deep HST observations separated by a time base-line of 5 years, allows us to study a pure sample of cluster main-sequence stars almost to the minimum mass for hydrogen burning. High-precision photometry shows how badly current theoretical models fail to reproduce the color-magnitude diagram of low-mass stars of moderate metallicity ([M/H] ~ -1). This inability of theory to reproduce the luminosity-radius relation casts doubt on the theoretical mass-luminosity relation, which is needed to convert the observed luminosity function (LF) into a mass function (MF), as well as to convert our locally determined LF into a global MF. To the extent that we trust theoretical M-L relations for such transformations, we obtain a flat MF from the LF, and some indication that theoretical masses might be too low at a given luminosity, near the H-burning limit.Comment: 8 pages, 4 figures, ApJL in press (Accepted 30 Aug 2001

    Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper

    Get PDF
    BACKGROUND AND OBJECTIVES: Treatment of spasticity poses a major challenge given the complex clinical presentation and variable efficacy and safety profiles of available drugs. We present a systematic review of the pharmacological treatment of spasticity in multiple sclerosis (MS) patients. METHODS: Controlled trials and observational studies were identified. Scientific evidence was evaluated according to pre-specified levels of certainty. RESULTS: The evidence supports the use of baclofen, tizanidine and gabapentin as first-line options. Diazepam or dantrolene could be considered if no clinical improvement is seen with the previous drugs. Nabiximols has a positive effect when used as add-on therapy in patients with poor response and/or tolerance to first-line oral treatments. Despite limited evidence, intrathecal baclofen and intrathecal phenol show a positive effect in severe spasticity and suboptimal response to oral drugs. CONCLUSION: The available studies on spasticity treatment offer some insight to guide clinical practice but are of variable methodological quality. Large, well-designed trials are needed to confirm the effectiveness of antispasticity agents and to produce evidence-based treatment algorithms

    Ocrelizumab exposure in relapsing–remitting multiple sclerosis: 10-year analysis of the phase 2 randomized clinical trial and its extension

    Get PDF
    Open-label extension (OLE) studies help inform long-term safety and efficacy of disease-modifying therapies in multiple sclerosis (MS). We report exploratory analyses from a phase 2 trial on the longest follow-up to date of ocrelizumab-treated patients with relapsing–remitting MS (RRMS). The primary treatment period (PTP) comprised four 24-week treatment cycles; participants were randomized to double-blind ocrelizumab (2000 mg or 600 mg), placebo, or interferon β-1a (open label) for one cycle, then dose-blinded ocrelizumab 1000 mg or 600 mg for the remaining cycles. The PTP was followed by consecutive assessed and unassessed treatment-free periods (TFPs) and then the OLE (ocrelizumab 600 mg every 24 weeks). Safety and efficacy were prospectively assessed. Of 220 participants randomized, 183 (84%) completed the PTP. After the TFP, 103 entered OLE (median OLE ocrelizumab exposure 6.5 years). Most common adverse events across all periods were infusion-related reactions. MRI activity, annualized relapse rate, and confirmed disability progression (CDP) rates remained low throughout. During the assessed TFP, there was a trend toward less and later B-cell repletion, and later CDP, for patients randomized to ocrelizumab; MRI activity was observed in 16.3% of patients, the earliest 24 weeks after the last ocrelizumab dose. This is the longest follow-up of ocrelizumab-treated patients with RRMS, with no new safety signals emerging during an observation period from 2008 to 2020. Results reinforce the sustained efficacy of long-term ocrelizumab. Reduced disease activity was maintained following interruption of 6-month dosing cycles, with no evidence of rebound

    A randomized, placebo-controlled phase 2 trial of laquinimod in primary progressive multiple sclerosis

    Get PDF
    OBJECTIVE: To evaluate efficacy, safety, and tolerability of laquinimod in patients with primary progressive multiple sclerosis (PPMS). METHODS: In the randomized, double-blind, placebo-controlled, phase 2 study ARPEGGIO (A Randomized Placebo-controlled trial Evaluating laquinimod in PPMS, Gauging Gradations In MRI and clinical Outcomes), eligible PPMS patients were randomized 1:1:1 to receive once-daily oral laquinimod 0.6 mg or 1.5 mg or matching placebo. Percentage brain volume change (PBVC; primary endpoint) from baseline to week 48 was assessed by MRI. Secondary and exploratory endpoints included clinical and MRI measures. Efficacy endpoints were evaluated using a predefined, hierarchical statistical testing procedure. Safety was monitored throughout the study. The laquinimod 1.5 mg dose arm was discontinued on January 1, 2016 due to findings of cardiovascular events. RESULTS: 374 patients were randomized to laquinimod 0.6 mg (n = 139) or 1.5 mg (n = 95) or placebo (n = 140). ARPEGGIO did not meet the primary endpoint of significant treatment effect with laquinimod 0.6 mg versus placebo on PBVC from baseline to week 48 (adjusted mean difference = 0.016%, p = 0.903). Laquinimod 0.6 mg reduced the number of new T2 brain lesions at week 48 (risk ratio = 0.4; 95% confidence interval, 0.26-0.69; p = 0.001). Incidence of adverse events was higher among patients treated with laquinimod 0.6 mg (83%) versus laquinimod 1.5 mg (66%) and placebo (78%). CONCLUSIONS: Laquinimod 0.6 mg did not demonstrate a statistically significant effect on brain volume loss in PPMS at week 48

    Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis MAGNIFY-MS

    Get PDF
    BACKGROUND AND OBJECTIVES The onset of action for high-efficacy immunotherapies in multiple sclerosis (MS) is an important parameter. This study (MAGNIFY-MS) evaluates the onset of action of cladribine tablets by observing changes in combined unique active (CUA) MRI lesion counts during the first 6 months of treatment in patients with highly active relapsing MS. METHODS MRI was performed at screening, baseline, and at months 1, 2, 3, and 6 after initiating treatment with cladribine tablets 3.5 mg/kg. CUA lesion counts, defined as the sum of T1 gadolinium-enhancing (Gd+) lesions and new or enlarging active T2 lesions (without T1 Gd+), were compared between postbaseline and the baseline period and standardized to the period length and the number of MRIs performed. RESULTS Included in this analysis were 270 patients who received ≥1 dose of cladribine tablets. After treatment initiation, significant reductions in mean CUA lesion counts were observed from month 1 onward compared with the baseline period (-1.193 between month 1 and month 6, -1.500 between month 2 and month 6, and -1.692 between month 3 and month 6; all p < 0.0001). Mean T1 Gd+ lesion counts were decreased from month 2 onward compared with baseline (-0.857 at month 2, -1.355 at month 3, and -1.449 at month 6; all p < 0.0001), whereas the proportion of patients without any CUA lesions increased from 52.0% between month 1 and month 6 to 80.5% between month 3 and month 6. DISCUSSION Findings suggest an early onset of action for cladribine tablets, with an increasing reduction in active MRI lesions over time. TRIAL REGISTRATION INFORMATION NCT03364036; Date registered: December 06, 2017. CLASSIFICATION OF EVIDENCE Using frequent MRI assessments of the brain over the first 6 months of the MAGNIFY-MS study (NCT03364036), we aimed to determine the onset of action of cladribine tablets 3.5 mg/kg in adult patients with highly active relapsing MS. This study provides Class IV evidence that, in such patients, treatment with cladribine tablets is associated with an early onset of action with reductions in active MRI lesion counts from month 2 (day 60) onward, with an increasing reduction in such lesions over time
    corecore