9 research outputs found

    Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications

    Get PDF
    SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185

    Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme

    Get PDF
    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes

    Effect of Glucocorticoid pretreatment on oxidative liver injury and survival in jaundiced rats with Endotoxing Cholangitis

    Full text link
    Introduction: Biliary tract infection is associated with high mortality. This study investigated the effect of glucocorticoid pretreatment on lipopolysaccharide (LPS)-induced cholangitis. Methods: Rats undergoing either sham operation or ligation of the extrahepatic bile duct (BDL) for 2 weeks were randomly assigned to receive intravenous injections of dexamethasone (DX) or normal saline (NS) prior to infusing LPS into the biliary tract. The plasma levels of tumor necrosis factor-&alpha; (TNF&alpha;), chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) as well as liver mRNA expression of MCP-1 and MIP-2 were determined. Infiltration of monocytes, Kupffer cells, and neutrophils in rat liver were studied with immunohistochemistry. Oxidative liver injury was measured by the malondialdehyde (MDA) content. Results: Dexamethasone pretreatment resulted in significantly decreased plasma levels of TNF&alpha; at 1 hour, MCP-1 and MIP-2 at 2 and 3 hours, and decreased liver MCP-1 mRNA expression at 3 hours following LPS infusion in BDL-DX rats than in BDL-NS rats. The number of inflammatory cells in the liver was significantly different between sham- and BDL-treated rats but was not affected by DX pretreatment. Pretreatment with DX resulted in significantly decreased liver MDA contents in the BDL-DX group than that in the BDL-NS group. Jaundiced rats pretreated with 5 mg DX prior to infusion of 1 g of LPS were 6.8 times more likely to survive than those that were not pretreated. Conclusions: Pretreatment of jaundiced, LPS-treated rats with a&nbsp; supraphysiological dose of dexamethasone may rescue their lives by suppression of chemokine expression and alleviation of oxidative liver injury.<br /

    Oxidative Stress in Vascular Disease

    No full text
    corecore