23 research outputs found

    BounceBack™ capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delayed onset muscle soreness (DOMS) is muscle pain and discomfort experienced approximately one to three days after exercise. DOMS is thought to be a result of microscopic muscle fiber tears that occur more commonly after eccentric exercise rather than concentric exercise. This study sought to test the efficacy of a proprietary dietary supplement, BounceBack™, to alleviate the severity of DOMS after standardized eccentric exercise.</p> <p>Methods</p> <p>The study was a randomized, double-blind, placebo-controlled, crossover study. Ten healthy community-dwelling untrained subjects, ranging in age from 18–45 years, were enrolled. Mean differences within and between groups were assessed inferentially at each data collection time-point using t-tests for all outcome measures.</p> <p>Results</p> <p>In this controlled pilot study, intake of BounceBack™ capsules for 30 days resulted in a significant reduction in standardized measures of pain and tenderness post-eccentric exercise compared to the placebo group. There were trends towards reductions in plasma indicators of inflammation (high sensitivity C-reactive protein) and muscle damage (creatine phosphokinase and myoglobin).</p> <p>Conclusion</p> <p>BounceBack™ capsules were able to significantly reduce standardized measures of pain and tenderness at several post-eccentric exercise time points in comparison to placebo. The differences in the serological markers of DOMS, while not statistically significant, appear to support the clinical findings. The product appears to have a good safety profile and further study with a larger sample size is warranted based on the current results.</p

    Measurements of daily energy intake and total energy expenditure in people with dementia in care homes: the use of wearable technology.

    Get PDF
    Objectives: To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. Design and setting: A cross-sectional study in care homes in the UK. Participants: Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. Measurements: A physical activity monitor (Sensewear TM Armband , Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. Results: The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2 ; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. Conclusions: The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementi

    Validity of physical activity monitors for assessing lower intensity activity in adults

    Get PDF
    Background: Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Methods: Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. Results: The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). Conclusions: The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.This research was funded by a grant from Bodymedia Inc. awarded to Dr. Greg Welk

    Evaluating the effects of increasing physical activity to optimize rehabilitation outcomes in hospitalized older adults (MOVE Trial): Study protocol for a randomized controlled trial

    Get PDF
    Background: Older adults who have received inpatient rehabilitation often have significant mobility disability at discharge. Physical activity levels in rehabilitation are also low. It is hypothesized that providing increased physical activity to older people receiving hospital-based rehabilitation will lead to better mobility outcomes at discharge. Methods/Design: A single blind, parallel-group, multisite randomized controlled trial with blinded assessment of outcome and intention-to-treat analysis. The cost effectiveness of the intervention will also be examined. Older people (age &gt;60 years) undergoing inpatient rehabilitation to improve mobility will be recruited from geriatric rehabilitation units at two Australian hospitals. A computer-generated blocked stratified randomization sequence will be used to assign 198 participants in a 1:1 ratio to either an 'enhanced physical activity' (intervention) group or a 'usual care plus' (control) group for the duration of their inpatient stay. Participants will receive usual care and either spend time each week performing additional physical activities such as standing or walking (intervention group) or performing an equal amount of social activities that have minimal impact on mobility such as card and board games (control group). Self-selected gait speed will be measured using a 6-meter walk test at discharge (primary outcome) and 6 months follow-up (secondary outcome). The study is powered to detect a 0.1 m/sec increase in self-selected gait speed in the intervention group at discharge. Additional measures of mobility (Timed Up and Go, De Morton Mobility Index), function (Functional Independence Measure) and quality of life will be obtained as secondary outcomes at discharge and tertiary outcomes at 6 months follow-up. The trial commenced recruitment on 28 January 2014. Discussion: This study will evaluate the efficacy and cost effectiveness of increasing physical activity in older people during inpatient rehabilitation. These results will assist in the development of evidenced-based rehabilitation programs for this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12613000884707(Date of registration 08 August 2013); ClinicalTrials.gov Identifier NCT01910740(Date of registration 22 July 2013)
    corecore