349 research outputs found

    Tissue Specific Profiling of Females of Schistosoma japonicum by Integrated Laser Microdissection Microscopy and Microarray Analysis

    Get PDF
    Schistosomes are parasitic worms responsible for important human diseases in tropical and developing nations. There is urgent need to develop new drugs and vaccines to augment current treatments for this disease. In recent years, concerted efforts by many laboratories have led to extensive genetic sequencing of the parasites, and the publication of genome sequence for two agents of schistosomiasis appears imminent. This genetic information has revealed many molecules expressed by the schistosome parasites for which no functional information is available. This lack of information extends to ignorance of where in the complex multicellular schistosome parasites the genes are expressed. We integrated two molecular and cellular techniques to address these knowledge gaps. We used laser microdissection microscopy to dissect small but highly important tissues involved in nutrition and reproduction from sections of female Schistosoma japonicum. From these dissected tissues we then used a broad molecular biology method to identify the multiple genes active in these tissues. Our approach has allowed us to formulate the basis of a “gene atlas” for schistosome parasites, defining the expression repertoire of specific tissues. The better understanding of the roles of tissues in parasite biology, especially in development, reproduction and interactions with its human hosts, should promote future investigations into pathogenesis and control of these significant parasites

    Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint

    Get PDF
    Determining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC

    Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Get PDF
    BACKGROUND: The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. RESULTS: On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. CONCLUSION: The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    hTID-1 defines a novel regulator of c-Met Receptor signaling in renal cell carcinomas

    Get PDF
    The c-Met receptor tyrosine kinase (MetR) is frequently overexpressed and constitutively phosphorylated in a number of human malignancies. Activation of the receptor by its ligand, hepatocyte growth factor (HGF), leads to increased cell proliferation, motility, survival and disruption of adherens junctions. In this study, we show that hTid-1, a DNAJ/Hsp40 chaperone, represents a novel modulator of the MetR signaling pathway. hTid-1 is a co-chaperone of the Hsp70 family of proteins, and has been shown to regulate a number of cellular signaling proteins including several involved in tumorigenic and apoptotic pathways. In this study we demonstrate that hTid-1 binds to unphosphorylated MetR and becomes dissociated from the receptor upon HGF stimulation. Overexpression of the short form of hTid-1 (hTid-1S) in 786-0 renal clear cell carcinomas (RCCs) enhances MetR kinase activity leading to an increase in HGF-mediated cell migration with no discernible effect on cell proliferation. By contrast, knockdown of hTid-1 markedly impairs both the onset and amplitude of MetR phosphorylation in response to HGF without altering receptor protein levels. hTid-1-depleted cells display defective migratory properties, coincident with inhibition of ERK/MAP kinase and STAT3 pathways. Taken together, our findings denote hTid-1S as an essential regulatory component of MetR signaling. We propose that the binding of hTid-1S to MetR may stabilize the receptor in a ligand-competent state and this stabilizing function may influence conformational changes that take place during the catalytic cycle that promote kinase activation. Given the prevalence of HGF/MetR pathway activation in human cancers, targeted inhibition of hTid-1 may be a useful therapeutic in the management of MetR-dependent malignancies
    corecore