104 research outputs found
Software project economics: A roadmap
The objective of this paper is to consider research progress in the field of software project economics with a view to identifying important challenges and promising research directions. I argue that this is an important sub-discipline since this will underpin any cost-benefit analysis used to justify the resourcing, or otherwise, of a software project. To accomplish this I conducted a bibliometric analysis of peer reviewed research articles to identify major areas of activity. My results indicate that the primary goal of more accurate cost prediction systems remains largely unachieved. However, there are a number of new and promising avenues of research including: how we can combine results from primary studies, integration of multiple predictions and applying greater emphasis upon the human aspects of prediction tasks. I conclude that the field is likely to remain very challenging due to the people-centric nature of software engineering, since it is in essence a design task. Nevertheless the need for good economic models will grow rather than diminish as software becomes increasingly ubiquitous
Recommended from our members
Estimating software project effort using analogies
Accurate project effort prediction is an important goal for the software engineering community. To date most work has focused upon building algorithmic models of effort, for example COCOMO. These can be calibrated to local environments. We describe an alternative approach to estimation based upon the use of analogies. The underlying principle is to characterise projects in terms of features (for example, the number of interfaces, the development method or the size of the functional requirements document). Completed projects are stored and then the problem becomes one of finding the most similar projects to the one for which a prediction is required. Similarity is defined as Euclidean distance in n-dimensional space where n is the number of project features. Each dimension is standardised so all dimensions have equal weight. The known effort values of the nearest neighbours to the new project are then used as the basis for the prediction. The process is automated using a PC based tool known as ANGEL. The method is validated on nine different industrial datasets (a total of 275 projects) and in all cases analogy outperforms algorithmic models based upon stepwise regression. From this work we argue that estimation by analogy is a viable technique that, at the very least, can be used by project managers to complement current estimation techniques
Recommended from our members
Predicting with sparse data
It is well known that effective prediction of project cost related factors is an important aspect of software engineering. Unfortunately, despite extensive research over more than 30 years, this remains a significant problem for many practitioners. A major obstacle is the absence of reliable and systematic historic data, yet this is a sine qua non for almost all proposed methods: statistical, machine learning or calibration of existing models. In this paper we describe our sparse data method (SDM) based upon a pairwise comparison technique and Saaty's Analytic Hierarchy Process (AHP). Our minimum data requirement is a single known point. The technique is supported by a software tool known as DataSalvage. We show, for data from two companies, how our approach — based upon expert judgement — adds value to expert judgement by producing significantly more accurate and less biased results. A sensitivity analysis shows that our approach is robust to pairwise comparison errors. We then describe the results of a small usability trial with a practising project manager. From this empirical work we conclude that the technique is promising and may help overcome some of the present barriers to effective project prediction
Re-planning for a successful project schedule
Time-to-market or project duration has increasing significance for commercial software development. We report on a longitudinal study of a project at IBM Hursley Park. The focus of this study was schedule behaviour; however, we explored a range of related factors, including planned versus actual progress, resource allocation and functionality delivered. In the course of the 12-month study, evidence was collected from eight interviews, 49 project meetings, a number of project documents and a feedback workshop. The project leader considered the project to be a success, not only in terms of satisfying resource and schedule objectives, but also in the marketplace. Whilst many of the originally planned external commitments were met, it is clear that the project did not adhere to its original (detailed) plan and indeed there were no less than seven re-plans. These re-plans were mainly in response to mis-estimates in the original plan, rather than in response to the introduction of additional requirements (of which there were several) or problems with external dependencies. Furthermore, these re-plans suggest a distinction between the nature of the initial planning process and the nature of the re-planning process during the project. Attention is also directed at the implications these re-plans have for software metrics and cost estimation researc
Recommended from our members
A systematic review of software development cost estimation studies
This paper aims to provide a basis for the improvement of software estimation research through a systematic review of previous work. The review identifies 304 software cost estimation papers in 76 journals and classifies the papers according to research topic, estimation approach, research approach, study context and data set. A web-based library of these cost estimation papers is provided to ease the identification of relevant estimation research results. The review results combined with other knowledge provide support for recommendations for future software cost estimation research, including: 1) Increase the breadth of the search for relevant studies, 2) Search manually for relevant papers within a carefully selected set of journals when completeness is essential, 3) Conduct more studies on estimation methods commonly used by the software industry, and, 4) Increase the awareness of how properties of the data sets impact the results when evaluating estimation methods
A literature review of expert problem solving using analogy
We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial problems. We identified twelve studies. These studies suggest that analogical reasoning plays an important role in problem solving, but that CBR tools do not model this in a biologically plausible way. For example, the ability to induce structure and therefore find deeper analogies is widely seen as the hallmark of an expert. However, CBR tools fail to provide support for this type of reasoning for prediction. We conclude this mismatch between experts’ cognitive processes and software tools contributes to the erratic performance of analogy-based prediction
Reliability and validity in comparative studies of software prediction models
Empirical studies on software prediction models do not converge with respect to the question "which prediction model is best?" The reason for this lack of convergence is poorly understood. In this simulation study, we have examined a frequently used research procedure comprising three main ingredients: a single data sample, an accuracy indicator, and cross validation. Typically, these empirical studies compare a machine learning model with a regression model. In our study, we use simulation and compare a machine learning and a regression model. The results suggest that it is the research procedure itself that is unreliable. This lack of reliability may strongly contribute to the lack of convergence. Our findings thus cast some doubt on the conclusions of any study of competing software prediction models that used this research procedure as a basis of model comparison. Thus, we need to develop more reliable research procedures before we can have confidence in the conclusions of comparative studies of software prediction models
How reliable are systematic reviews in empirical software engineering?
BACKGROUND – the systematic review is becoming a more commonly employed research instrument in
empirical software engineering. Before undue reliance is placed on the outcomes of such reviews it would seem useful to consider the robustness of the approach in this particular research context.
OBJECTIVE – the aim of this study is to assess the reliability of systematic reviews as a research instrument. In particular we wish to investigate the consistency of process and the stability of outcomes.
METHOD – we compare the results of two independent reviews under taken with a common research question.
RESULTS – the two reviews find similar answers to the research question, although the means of arriving at those answers vary.
CONCLUSIONS – in addressing a well-bounded research question, groups of researchers with similar domain experience can arrive at the same review outcomes, even though they may do so in different ways.
This provides evidence that, in this context at least, the systematic review is a robust research method
Software Defect Association Mining and Defect Correction Effort Prediction
Much current software defect prediction work concentrates on the number of defects remaining in software system. In this paper, we present association rule mining based methods to predict defect associations and defect-correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that for the defect association prediction, the accuracy is very high and the false negative rate is very low. Likewise for the defect-correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect-correction effort prediction method with other types of methods: PART, C4.5, and Na¨ıve Bayes and show that accuracy has been improved by at least 23%. We also evaluated the impact of support and confidence levels on prediction accuracy, false negative rate, false positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy
Enhancing Practice and Achievement in Introductory Programming With a Robot Olympics
© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information
- …