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Abstract—Computer programming is notoriously difficult to
learn. To this end, regular practice in the form of application
and reflection is an important enabler of student learning.
However, educators often find that first-year B.Sc. students do
not readily engage in such activities. Providing each student
with a programmable robot, however, could be used to facilitate
application and reflection since, potentially, robots facilitate
engaging learning experiences whilst providing immediate and
intuitive feedback. This paper explores whether an introductory
course centred upon programming personal robots in preparation
for an end-of-course event day—a Robot Olympics—can help
students to firstly, engage in programming practice more
frequently and secondly, improve the quality of their code. A
survey was conducted to examine the students’ programming
practice behaviour and students’ final coursework submissions
were also reviewed for aspects of program quality. The findings
from this cohort were compared to a reference-group from
a previous cohort that shared similar learning objectives and
entry requirements, yet had focused on web programming
as opposed to using robots. The results reveal statistically
significant increases in programming practice compared to the
reference-group. Furthermore, being enrolled on the course
culminating in the Robot Olympics was a significant predictor
of two aspects of program quality: functional coherence and
sophistication. This suggests that robot-centred courses can
promote engagement with, and enhance some aspects of,
programming practice.

Index Terms—Personal Robots, CS1, Introductory
Programming, Achievement, Practice, Motivation, Quality.

I. INTRODUCTION

REGULARLY writing and evaluating code plays an
important role in learning computer programming. This

is because ongoing self-regulated practice plays a key role in
the transition from novice to expert [1]. It has been reported
that ten years of such practice is needed to become a highly
regarded software engineer [1], [2]. Consequently, introductory
programming courses aim to encourage students to practice
frequently and to actively reflect on how they can improve the
quality of their code.

Programming, however, has a history of poor outcomes
at the introductory level [3] and educators often encounter
students whom do not regularly engage with programming
tasks [4], [5]. This can occur because programming presents
seemingly insurmountable challenges to beginners [6], often
leaving them to feel frustrated and confused [7]–[9]. As a
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result, educators use the laboratory setting to provide feedback
and to support students in an attempt to motivate them as
they encounter challenges [4], [5]. However, such efforts are
limited and may not encourage practice beyond the laboratory
environment.

It is, therefore, important to examine how effective forms
of practice can be promoted beyond the laboratory setting.
An approach that shows promise is the use of personal
robots [10], whereby each student is provided with their own
programmable robot. In theory, they make learning activities
more engaging, motivating students to spend more time
experimenting with their programs [11]. They also provide
a more intuitive source of feedback as they reinforce mental
models in a visual way [12], helping students to fix problems
and overcome frustrations in a relatively short time.

However, while the potential impact of robots is promising,
it is important to situate robots in an appropriate context in
order to maximise that impact. That is, robots are tools that
support, complement and enhance learning environments. As
an example, robots frequently grab attention [11], [13], [14].
Thus, robot can draw upon students’ curiosity to engage them
with an assignment. However, there is little evidence to suggest
that the mere presence of a robot makes an assignment more
relevant, better able to inspire confidence, or more satisfying
[15]. Therefore, such constructs may need to be addressed
through other aspects of the learning environment.

This article evaluates one such environment: a course
centred around a Robot Olympics. In this introductory
programming course, students learn to program their own
personal robots during worksheet-based laboratory sessions.
To engage students in practice that leads to improvements
in the quality of their code, their experimentation with their
personal robot is supported through regular code reviews.
This prepares students for an end-of-course event—the Robot
Olympics itself—where they program their own robots to
complete a specific task in a dedicated space as an assessed
demonstration.

II. RELATED WORK

The use of robots in educational contexts has grown in
popularity since the early Millennium [16] and robot-centred
courses are often positively received by students [11].
Furthermore, a systematic review has shown that robots,
in general, can be effective when teaching computer
programming [17]. However, there are questions about the
effectiveness of robot-centred courses, highlighting a need to
explore achievement data [18].
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Where such evidence is available, robot-centred
programming courses have not consistently demonstrated
success. A study conducted at the US Air Force Academy
found that scores in a robotics section of a programming
course were lower than in a non-robotics section [16]. Limited
access to the robots has been suggested as the potential reason
for this result, as students received insufficient time to reflect
and engage in further experimentation [16]. Consequently,
the availability of robots could moderate the effectiveness of
a robot-centred course.

Now that low-cost robots such as the Finch [19] are
available, students can learn using their own personal robots.
In order to motivate students to engage in programming
practice with their robots, various strategies can be used [20].
A popular choice is hosting a Robot Olympics [21]–[25].
These ‘games’ often take the form of events where students
demonstrate solutions to a set of well-defined tasks. For
example, students in the Trinity College Fire-Fighting Home
Robot Contest explore programming through the development
of a robot which can navigate a mock-up home to extinguish
a candle [24]. This approach would seem to represent a novel
and engaging learning environment. However, the method has
not been formally evaluated as a model for an introductory
programming course, so the potential impact is unclear.

It is important to clarify this impact to help those deciding to
introduce robots into a course. For example, Kumar questions
“is it worth using robots for traditional projects in [an] AI
course?” and concludes “no, if we consider the time and
effort that robot projects demand” [26]. Such demands range
from storage, locating spare robots when students forget them,
diagnosing abnormal robot behaviours, repairing mechanical
failures, and the increased duration of assessments; which,
may not be justified if any positive impacts are marginal.

III. INTENDED OUTCOMES

This article evaluates the impact of a robot-centred
programming course, in terms of levels of practice and
achievement, through comparison with a reference-group. The
reference group was drawn from a previous year on the same
programme within the authors’ department. Both groups had
the same entry requirements and followed a similar structure.
As typical for a UK institution, each involved a year-long
course structured across two terms of twelve weeks. However,
the earlier cohort focused on web programming as the robots
had not been introduced at that point into the department. As
such, the following research questions are posed in order to
determine differences between the two cohorts:
RQ1. Will the students enrolled on the course leading to

the Robot Olympics report spending more hours per
week practising their programming skills compared
to those enrolled in the web programming course?

RQ2. Will the students enrolled on the course leading
to the Robot Olympics produce code of an overall
higher quality compared to those enrolled in the
web programming course?

RQ3. Will greater levels of practice and practice within
the context of preparing for a Robot Olympics
predict aspects of code quality differently?

As it is possible that robots may not be equally effective
for all students, gender differences are also explored. The
first research question therefore examines two hypotheses:
male and female students enrolled on the robot-centred
course will report more hours of practice per week (H1-2).
The second research question examines three hypotheses:
practice will have a direct effect on overall code quality
(H3), enrolment on the robot-centred course will have a
direct effect on overall code quality (H4) and gender will
have a direct effect on overall code quality (H5). The third
research question addresses three core hypotheses: that greater
practice, gender, and course enrolment will have different
impacts on three different aspects of code quality: functional
coherence; readability; and sophistication. As this represents
three variables of interest and three aspects of code quality,
this results in an additional nine hypotheses (H6-14).

IV. COURSE DESIGN

Both courses were practical introductions to computer
programming which expected students to:

LO1. Demonstrate an understanding of the basic concepts
of programming

LO2. Analyse a problem and produce a computer
program as a solution to that problem

LO3. Use a simple development environment to produce
viable program code

As both cohorts were supervised by a similar team of core
teaching staff and the robot-centred course built upon existing
teaching practice within the department, both courses followed
similar basic structures. This consisted of a series of lectures
introducing concepts to students and laboratory sessions which
then reinforce those concepts through practical programming
tasks (similar to [27]). Laboratory sessions were organised
weekly to ensure regular practice. To encourage attendance,
the web programming cohort had mid-term examinations
while those preparing for the Robot Olympics had their code
formally reviewed by teaching assistants. This meant that all
students received ongoing soft scaffolding [28] and feedback
at regular intervals [29] as this strategy is believed to be more
effective for encouraging practice [4], [30].

Both cohorts completed their respective programming tasks
as part of a group project. Thus, students were divided into
groups of five or six. Meetings with group tutors facilitated
individual support and helped to prompt students to reflect
on their progress through small group learning activities [31].
This strategy also helps students form learning communities,
encouraging mutual support during challenging tasks and
transforming experimentation with robots into social learning
opportunities [32], [33]. It also reflects and presents (in a small
way) the composition and communication issues found in the
IT industry [34].

While there are many similarities between the two courses,
there is also a number of key differences. Table I presents
these differences, showing that the courses are comparable
but also highlighting several confounds. The earlier cohort
focused exclusively on web programming and the later cohort
on the use of the robots. As the learning objectives were
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TABLE I
KEY DIFFERENCES BETWEEN THE WEB PROGRAMMING COURSE AND

THE ROBOT-CENTRED COURSE

Course Element Web Programming Robot Olympics

Personal Robot 7 3

JavaServer Page Project 3 7

Robot Olympics Project 7 3

Assessed Worksheets 7 3

Exams 3 7

Oral Viva 7 3

Python Classes 3 7

Java Classes 3 3

the same, there were many similarities between the tasks
each group member had to undertake: firstly, both had to be
written in Java; secondly, both had to demonstrate the same
range of programming constructs; thirdly, both examined how
students separated the user interface (i.e., presentation layer)
from the key functionality (i.e., domain logic layer); finally,
both validate user input and both demonstrate file processing.
The assessed problems were also designed to be of similar
size and complexity. However, the robot coding problems were
different in nature as they were designed to capture students’
interest and make use of the robots’ capabilities1.

The web form processing tasks, such as adding content to
a file and displaying it on a web page, were replaced with
‘events’ within the robot Olympics. Examples include: Morse
code communication, where the robot would use the light on
its beak to communicate Morse code translations; obstacle
course, where the robot had to navigate across an arena; robot
controller, where the movement of the robot is controlled
directly through a user interface and tunnel navigation, where
the robot measured the lengths of tunnels with its light sensor.

Another key difference is that the web programming cohort
followed a combined Python and Java curriculum which
focused on JavaServer Pages (JSP) (see [35] for details). As
such, new learning content replaced some of the previous
material (i.e., python and JSP classes) in order to help students
with the new mode of assessment (i.e., using the robots).

V. METHOD

A. Data Collection

For administrative reasons, the sampling frame for each
cohort were the students who had completed at least one
code review by the end of the final term. A random sampling
procedure was used to select participants. Data was collected
in three rounds: a paper-based questionnaire was distributed
to all students in the laboratory during their final laboratory
session; a digital version was then advertised on the virtual
learning environment and email alerts were distributed to those
whom had not responded to the paper-version; after ten days,
an additional series of follow-up emails were distributed to
the non-respondents. All participants were offered an explicit
opt-out for further communication at each stage.

1Further details on the Robot Olympics and its assessment method are
available at: http://dx.doi.org/10.13140/2.1.3680.9281

Target sample sizes were calculated using Cochran’s
formula [36] and adjusted for anticipated non-response. From
126 invitations for the web programming cohort and 115
invitations for the robot-centred cohort, 91 and 84 responded.
Thus, response rates were 72% and 73%, respectively, noting
that 34 and 30 cases were classified as late because significant
follow-up was required to elicit their response.

Data was screened for non-response bias. Firstly,
demographic variables were compared to known population
characteristics including age, gender and previous experience.
There were no significant differences. Secondly, timely
respondents were compared to late respondents. Although
late respondents reported lower self-efficacy for programming
tasks (p = .008), higher programming anxiety (p = .007)
and lower interest in programming (p = .000), there were no
significant differences in practice or achievement.

B. Participant Characteristics
Participants were first-year undergraduate students

following “Computer Science” or “Business Computing” at
the authors’ institution2. In the web programming cohort, the
average age was 19.5 and 26.5% of the respondents were
female. Approximately 46.8% reported no prior programming
experience, with 26.6% having a vocational or high school
qualification in computing. In the robot-centred cohort, the
average age was 19.6 and 16.8% of the respondents were
female. Similarly, 45.5% reported no prior programming
experience, with 31.2% having a vocational or high school
qualification in computing. There were no statistically
significant differences in terms of age or gender. Additionally,
there was no statistically significant difference in terms of
prior experience.

C. Research Instruments
1) Self-Reported Weekly Programming Practice: Hours

of programming activity per week was assessed using a
self-report measure. The item ”in a typical week during
term-time, how frequently did you write code and/or work on
programming related activities?” was presented as a 7-point
Guttman-style item. Each response option was labelled ”at
least {} hours” increasing in multiples of five.

2) Code Quality: Quality of coursework submissions was
scored according to a marking scheme by a single rater.
Although tasks were different, both shared a common set
of learning objectives and level of sophistication. Three
aspects of code quality were assessed: functional coherence,
which measured whether solutions successfully implemented
the set requirements; readability, which measured whether
the solution was commented and structured appropriately
for future maintenance; and sophistication, which measured
whether an appropriate range of programming constructs
had been used. Each aspect was scored according to
five descriptors, with the lowest indicating inadequate
quality. Moderation of 12 truncated submissions showed that
self-consistency (α = .91) and faculty agreement with marks
(α = .72) were adequate [37].

2http://www.brunel.ac.uk/cedps/computer-science/undergraduate-studies



IEEE TRANSACTIONS ON EDUCATION, VOL. A, NO. B, XXXX XXXX 4

Programming Practice (Hours Per Week)

> 20 hrs15-20 hrs10-15 hrs5-10 hrs0-5 hrs

P
e

rc
e

n
ta

g
e

 o
f 

S
tu

d
e

n
t 

C
o

h
o

rt
50%

40%

30%

20%

10%

0%

Error bars: 95% CI

Robot Olympiad Cohort

Web Programming Cohort

Student Cohort

Fig. 1. A clustered bar chart comparing self-reported hours of
programming practice between students enrolled in the Web Programming
and Robot-Centred courses.

VI. DATA ANALYSIS

The data was analysed using PASW 18.0.3 for Windows.
Cases with missing data were excluded list-wise. All p-values
from null-hypothesis significance tests are two-tailed with
statistical significance being determined at the conventional
level (α = .05). Table III on the following page provides a
summary of adjustments for multiple hypotheses testing using
the Benjamini-Hotchberge Procedure [38].

A. Greater Practice with the Robot Olympics (RQ1)

As self-reported programming practice did not follow a
normal distribution, a Mann-Whitney U Test was conducted to
examine the difference between the two cohorts. This indicated
that programming practice was greater in the robot-centred
course compared to the web programming course for both
male students (U = 1404, p = .016, r = 0.21) and female
students (U = 73, p = .024, r = 0.40). This is shown in
Figure 1, where the proportion of students studying for less
than 10 hours per week decreases and those studying for more
than 10 hours per week increases. This represents an overall
increase of 37.4% based on the mean difference. However, it
should be noted that the median did not change and 54.8%
did not fulfil the expectation of 10-15 hours per week.

B. Higher Overall Quality with Practice and the Robot
Olympics (RQ2)

A factorial (2 x 2 x 5) between-subjects MANOVA
evaluated the impact of the robot-centred course at each level
of practice that students reported that they engaged in on
the quality of students’ code submissions. Assumptions of
normality were supported. However, Box’s and Brown-Forsyth
tests only supported equality of variance and equality of the
covariance matrices once readability was collapsed into four
categories (rather than five). As the cell sizes were not equal,
Pillai’s Trace was used to assess significance. Significant
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Fig. 2. A clustered bar chart comparing the overall quality of final
coursework submissions between students enrolled in the Web Programming
and Robot-Centred courses at each level of self-reported practice.

TABLE II
ANOVA RESULTS FOR EACH ASPECT OF CODE QUALITY

Predictors F p η2p d

Functional Coherence
Level of Practice 5.321 .001 .141
Course 19.268 .000 .129 1.15
Gender — — .003 0.27
Readability
Level of Practice 0.919 .455 .028
Course 1.504 .222 .011 0.36
Gender — — .016 0.39
Sophistication
Level of Practice 0.798 .529 .024
Course 5.426 .021 .040 0.74
Gender — — .011 0.37

Note: The estimate of Cohen’s d was calculated using the estimated marginal means from the MANOVA and the pooled
standard deviation of each variable.

multivariate effects for practice (Trace = .190, F =
2.202, p = .011, η2p = .063) and for course (Trace =
.134, F = 6.603, p < .001, η2p = .134) were found. However,
there were no significant effects for gender (Trace =
.019, F = 0.829, p = .480, η2p = .019).

C. Varying Effects of Practice and the Robot Olympics on
Aspects of Code Quality (RQ3)

To examine the effects on each aspect of code quality,
univariate ANOVAs were conducted. These are shown in
Table II above. As no gender differences were found in the
multivariate test, no hypotheses tests were conducted and only
the observed differences are shown. The results suggests that
preparation for the Robot Olympics helped students produce
higher quality code in terms of functional coherence and
sophistication. Furthermore, programming practice predicted
functional coherence. Interestingly, however, programming
practice itself did not predict higher code readability or
sophistication.
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VII. DISCUSSION

The findings reinforce the notion that robot-centred learning
environments can encourage programming practice. The
frequency of students reporting at least 10 hours of practice per
week increased from 22% to 45%. Nevertheless, engagement
remains an issue with more than 50% of students not
pursuing levels of practice set out as an expectation.
Further investigation into student practice could result in
improvements to the Robot Olympics by, for example,
considering other potential influences (see [4]).

The results reveal some evidence which suggests that
practice within the context of the robot-centred course can
be more effective than alternatives. This is an important
to consider, because how students practice is just as, if
not more, important than how long they practice for [1].
Examining overall quality ratings across different levels of
practice revealed that those involved in the Robot Olympics
consistently outperformed those on the web programming
course at lower levels of practice. However, further qualitative
enquiry is needed to explain how. This is because the available
data cannot isolate the contribution of any individual change
to the course, such as the use of personal robots.

Enrolment on the robot-centred course predicted functional
coherence, even when accounting for practice as a covariate.
This suggests that students fulfilled the requirements more
successfully. Hence, introducing personal robots within an
appropriate context can lead to improvements in student
outcomes in a way that just additional time-on-task does
not. An insight is that the physical feedback can be easily
understood by students, whereas a small difference in a web
page may not be so noticeable. Thus, the way the nature
of the coding interface and its feedback supports students’
development of mental models warrants investigation.

It was anticipated that the code reviews would help students
improve the readability of their code. However, enrolment
on the robot-centred course did not predict readability. There
are several explanations for this, with one such hypothesis
being that students prioritised the functionality of the code as
watching robots complete tasks is more compelling. However,
the format of the reviews could also be a factor.

Enrolment on the robot-centred course predicted
sophistication where practice did not. As such, the challenges
presented during code reviews and the robots themselves
could have pushed students to improve. It is interesting to
note that the increase was supported by a higher proportion
of those engaged in low levels of practice receiving higher
scores. Perhaps differences in style of cognition, creative
thinking, and reflection promoted this increase. Further work
is required to isolate and explore these hypotheses.

There were no statistically significant differences in terms
of gender. However, there were some potentially meaningful
differences in terms of effect size. Most notably, female
students showed greater changes in level of practice based on
course enrolment than male students. Additionally, there could
be small but meaningful differences in terms of achievement,
but this cannot be verified due to the low statistical power
associated with post-hoc analyses.

TABLE III
SUMMARY OF FINDINGS AND ADJUSTED P-VALUES

RQ Hn Hypothesis p̃ Conclusion

1 H1 ∆PRACT 6= 0 (GEN = male) .035 Supported
H2 ∆PRACT 6= 0 (GEN = female) .037 Supported

2 H3 PRACT → QLTY .030 Supported
H4 BOT → QLTY .000 Supported
H5 GEN → QLTY .528 —

3 H6 PRACT → FC .003 Supported
H7 BOT → FC .000 Supported
H8 GEN → FC — —
H9 PRACT → RD .528 —
H10 BOT → RD .305 —
H11 GEN → RD — —
H12 PRACT → SO .529 —
H13 BOT → SO .037 Supported
H14 GEN → SO — —

Note: Univariate tests for gender have been excluded as no multivariate significance was found in H5; p̃:
Benjimini-Hochberg adjusted p-value; PRACT: Self-Reported Hours of Programming Practice Per Week; QLTY: Overall
Code Quality; BOT: Enrolment in Robot-Centred Course; GEN: Gender; FC: Functional Coherence of Code; RD:
Readability of Code; SO: Sophistication of Code.

VIII. LIMITATIONS

The study was observational in nature, so confounds may
exist. For example, the two cohorts could have differed
at baseline on unobserved variables, there may have been
differences in teaching quality, etc. Furthermore, as there were
several changes, only the entire course is assessed rather
than individual differences. The analysis itself focuses on
quantitative data, excluding potentially useful qualitative data
on the benefits and challenges associated with the robots. As
such, it is unclear whether their characteristics encouraged
different approaches to learning and writing code. Caution
should be taken when interpreting self-report questionnaire
data [39]. Additionally, only those whom submitted code for
review were included, perhaps excluding those that failed to
engage with the robots, and the post-hoc hypotheses associated
with gender had a high probability of type-II error.

IX. CONCLUSIONS

Practice and reflection both play important roles in the
development of programming expertise. As such, it is
important to design courses that encourage these activities. As
summarised in Table III, this article explores a robot-centred
approach designed to promote these activities which was
trialled in an actual course used at the authors’ institution.
This reveals some evidence that the use of personal robots
in an appropriate context can inspire students to engage
in frequent practice. Enrolment on the new course also
predicted two aspects of code quality: functional coherence
and sophistication. This demonstrates that the robot-centred
course improved student outcomes in a way that just
additional time on task does not, suggesting a qualitatively
different learning experience. For example, did the physical
feedback from the personal robot aid in the construction of
mental models? As such, further work is needed to evaluate
how students’ reflective activities, meta-cognition, creativity,
attitudes, motivation, and approach to learning changed as a
result of participation in the new robot-centred course.
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