120 research outputs found
Recommended from our members
Journey to the West: Trans-Pacific Historical Biogeography of Fringehead Blennies in the Genus Neoclinus (Teleostei: Blenniiformes).
Several temperate marine taxa of the northern hemisphere follow a trans-Pacific biogeographic track with representatives on either side of the intervening boreal waters. Shelter-dwelling blenniiform fishes of the genus Neoclinus exhibit this trans-Pacific distribution pattern with three species in the eastern North Pacific and eight species in the western North Pacific. We reconstructed the phylogeny of the Neocliniini (Neoclinus and the monotypic Mccoskerichthys) using six genetic markers: four mitochondrial genes (COI, cytochrome b, 12S and 16S), and two nuclear genes (RAG-1, TMO-4C4). Ancestral state reconstruction and molecular clock dating were used to explore hypothetical ancestral distributions and area relationships, and to estimate divergent times within this group. The monophyly of the genus Neoclinus, and the reciprocal monophyly of the eastern Pacific and western Pacific lineages were supported. Available evidence, including the eastern Pacific and western Atlantic occurrence of a New World clade of blennioid fishes that includes this lineage, supports the origin of the Neocliniini in the eastern Pacific with a single divergence event to the west across the North Pacific by the ancestor of the western Pacific clade. Estimated divergence time of the eastern and western Pacific clades of Neoclinus was 24.14 million year ago, which falls during the Oligocene epoch. Estimated times of divergence in other trans-Pacific lineages of marine fishes vary widely, from recent Pleistocene events to as early as 34 mya
Multiple myeloma with high adenosine deaminase expression
A 50-year-old man with immunoglobulin A type multiple myeloma (MM) was referred to our hospital after bortezomib therapy. He had high alkaline phosphatase and lactate dehydrogenase levels. Computed tomography showed osteolytic and osteoblastic bone lesions. Response to salvage chemotherapy was temporary, and he developed a right pleural effusion with high adenosine deaminase (ADA) levels. He died from bleeding associated with a pelvic bone fracture 9 months later. ADA mRNA expression and ADA secretion of the MM cells from the patient were higher than those from myeloma cell lines tested. Clinical relevance of high ADA expression in MM cells is warranted
Busulfan for lymphoma with CNS involvement
The prognosis of relapsed or refractory lymphoma with central nervous system (CNS) involvement remains poor because of the lack of anticancer drugs with sufficient CNS penetration. [Case 1] A 65-year-old man was diagnosed with Stage IV mantle cell lymphoma. After two courses of chemotherapy and autologous hematopoietic stem cell (HSC) collection, urinary retention with fever developed. Cerebrospinal fluid analysis revealed leptomeningeal involvement, which was refractory to high-dose methotrexate therapy. Autologous peripheral blood stem cell transplantation (ASCT) was performed, followed by intravenous busulfan (ivBU), cyclophosphamide, and etoposide ; thereafter, no relapse has been detected for over six years. [Case 2] A 40-year-old woman with right lower hemiplegia was diagnosed with primary CNS lymphoma. Although four courses of high-dose methotrexate therapy were administered, the cerebral tumor increased in size. HSCs were collected after methotrexate therapy, and ASCT was performed in addition to conditioning using ivBU, cyclophosphamide, and etoposide, followed by whole-brain and local boost irradiation. She achieved complete remission, but relapsed two years after ASCT. High-dose ivBU-containing conditioning regimens with ASCT may be useful for refractory B-cell lymphoma with CNS involvement
In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues
Takahashi Y., Morimura R., Tsukamoto K., et al. In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues. Acta Biomaterialia 183, 111 (2024); https://doi.org/10.1016/j.actbio.2024.05.037.The development of high-throughput anticancer drug screening methods using patient-derived cancer cell (PDC) lines that maintain their original characteristics in an in vitro three-dimensional (3D) culture system poses a significant challenge to achieving personalized cancer medicine. Because stromal tissue plays a critical role in the composition and maintenance of the cancer microenvironment, in vitro 3D-culture using reconstructed stromal tissues has attracted considerable attention. Here, a simple and unique in vitro 3D-culture method using heparin and collagen together with fibroblasts and endothelial cells to fabricate vascularized 3D-stromal tissues for in vitro culture of PDCs is reported. Whereas co-treatment with bevacizumab, a monoclonal antibody against vascular endothelial growth factor, and 5-fluorouracil significantly reduced the survival rate of 3D-cultured PDCs to 30%, separate addition of each drug did not induce comparable strong cytotoxicity, suggesting the possibility of evaluating the combined effect of anticancer drugs and angiogenesis inhibitors. Surprisingly, drug evaluation using eight PDC lines with the 3D-culture method resulted in a drug efficacy concordance rate of 75% with clinical outcomes. The model is expected to be applicable to in vitro throughput drug screening for the development of personalized cancer medicine. Statement of significance: To replicate the cancer microenvironment, we constructed a cancer-stromal tissue model in which cancer cells are placed above and inside stromal tissue with vascular network structures derived from vascular endothelial cells in fibroblast tissue using CAViTs method. Using this method, we were able to reproduce the invasion and metastasis processes of cancer cells observed in vivo. Using patient-derived cancer cells, we assessed the possibility of evaluating the combined effect with an angiogenesis inhibitor. Further, primary cancer cells also grew on the stromal tissues with the normal medium. These data suggest that the model may be useful for new in vitro drug screening and personalized cancer medicine
An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function
NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication
Novel antimyeloma therapeutic option with inhibition of the HDAC1-IRF4 axis and PIM kinase
Multiple myeloma (MM) preferentially expands and acquires drug resistance in the bone marrow (BM). We herein examined the role of histone deacetylase 1 (HDAC1) in the constitutive activation of the master transcription factor IRF4 and the prosurvival mediator PIM2 kinase in MM cells. The knockdown or inhibition of HDAC1 by the class I HDAC inhibitor MS-275 reduced the basal expression of IRF4 and PIM2 in MM cells. Mechanistically, the inhibition of HDAC1 decreased IRF4 transcription through histone hyperacetylation and inhibiting the recruitment of RNA polymerase II at the IRF4 locus, thereby reducing IRF4-targeting genes, including PIM2. In addition to the transcriptional regulation of PIM2 by the HDAC1-IRF4 axis, PIM2 was markedly upregulated by external stimuli from BM stromal cells and interleukin-6 (IL-6). Upregulated PIM2 contributed to the attenuation of the cytotoxic effects of MS-275. Class I HDAC and PIM kinase inhibitors cooperatively suppressed MM cell growth in the presence of IL-6 and in vivo. Therefore, the present results demonstrate the potential of the simultaneous targeting of the intrinsic HDAC1-IRF4 axis plus externally activated PIM2 as an efficient therapeutic option for MM fostered in the BM
レゾルシル酸ラクトンLL-Z1640-2の成人T細胞白血病/リンパ腫に対する治療効果
Adult T-cell leukaemia/lymphoma (ATL) remains incurable. The NF-κB and interferon regulatory factor 4 (IRF4) signalling pathways are among the critical survival pathways for the progression of ATL. TGF-β-activated kinase 1 (TAK1), an IκB kinase-activating kinase, triggers the activation of NF-κB. The resorcylic acid lactone LL-Z1640-2 is a potent irreversible inhibitor of TAK1/extracellular signal-regulated kinase 2 (ERK2). We herein examined the therapeutic efficacy of LL-Z1640-2 against ATL. LL-Z1640-2 effectively suppressed the in vivo growth of ATL cells. It induced in vitro apoptosis and inhibited the nuclear translocation of p65/RelA in ATL cells. The knockdown of IRF4 strongly induced ATL cell death while downregulating MYC. LL-Z1640-2 as well as the NF-κB inhibitor BAY11-7082 decreased the expression of IRF4 and MYC at the protein and mRNA levels, indicating the suppression of the NF-κB-IRF4-MYC axis. The treatment with LL-Z1640-2 also mitigated the phosphorylation of p38 MAPK along with the expression of CC chemokine receptor 4. Furthermore, the inhibition of STAT3/5 potentiated the cytotoxic activity of LL-Z1640-2 against IL-2-responsive ATL cells in the presence of IL-2. Therefore, LL-Z1640-2 appears to be an effective treatment for ATL. Further studies are needed to develop more potent compounds that retain the active motifs of LL-Z1640-2
温熱療法による急速な翻訳抑制はカルフィルゾミブの抗骨髄腫活性を増強する
Hyperthermia is a unique treatment option for cancers. Multiple myeloma (MM) remains incurable and innovative therapeutic options are needed. We investigated the efficacy of hyperthermia and carfilzomib in combination against MM cells. Although MM cell lines exhibited different susceptibilities to pulsatile carfilzomib treatment, mild hyperthermia at 43℃ induced MM cell death in all cell lines in a time-dependent manner. Hyperthermia and carfilzomib cooperatively induced MM cell death even under suboptimal conditions. The pro-survival mediators PIM2 and NRF2 accumulated in MM cells due to inhibition of their proteasomal degradation by carfilzomib; however, hyperthermia acutely suppressed translation in parallel with phosphorylation of eIF2α to reduce these proteins in MM cells. Recovery of β5 subunit enzymatic activity from its immediate inhibition by carfilzomib was observed at 24 hours in carfilzomib-insusceptible KMS-11, OPM-2, and RPMI8226 cells, but not in carfilzomib-sensitive MM.1S cells. However, heat treatment suppressed the recovery of β5 subunit activity in these carfilzomib-insusceptible cells. Therefore, hyperthermia re-sensitized MM cells to carfilzomib. Our results suggest treatment of MM with hyperthermia in combination with carfilzomib. Further research is warranted on hyperthermia for drug-resistant extramedullary plasmacytoma
- …