1,908 research outputs found

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Redetermination of Ce[B5O8(OH)(H2O)]NO3·2H2O

    Get PDF
    The crystal structure of Ce[B5O8(OH)(H2O)]NO3·2H2O, cerium(III) aqua­hydroxidoocta­oxidopenta­borate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003 ▶). Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs) of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010). These layers, consisting of [B5O8(OH)(H2O)]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H⋯O hydrogen bonds between water mol­ecules and nitrate anions, located at the inter­layer space. The [BO3(H2O)]-group shows a [3 + 1] coordination and is considerably distorted from a tetra­hedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u.) when the contribution of the water mol­ecule (0.49 v.u.) is neglected

    MnBa2(HPO4)2(H2PO4)2

    Get PDF
    Crystals of manganese(II) dibarium bis­(hydrogenphosphate) bis­(dihydrogenphosphate), MnBa2(HPO4)2(H2PO4)2, were obtained by hydro­thermal synthesis. The title compound is isotypic with its CdII and CaII analogues. The structure is built up of an infinite {[Mn(HPO4)2(H2PO4)2]4−}n chain running along [100], which consists of alternate MnO6 octa­hedra and [PO4] tetra­hedra, in which the centrosymmetric MnO6 octa­hedra share their four equatorial O-atom corners with tetra­hedral [PO3(OH)] groups and their two axial apices with tetra­hedral [PO2(OH)2] groups. These chains are held together by BaO9 coordination polyhedra, developing into a three-dimensional structure. The O—H⋯O hydrogen bonds additionally stabilize the structural set-up. Due to the ionic radius of Mn2+ being much smaller than those of Ca2+ and Cd2+, this may imply that their adopted structure type has a great tolerance for incorporating various ions and the exploitation of more diverse compounds in the future is encouraged

    (Ga0.71B0.29)PO4 with a high-cristobalite-type structure refined from powder data

    Get PDF
    Gallium boron phosphate, (Ga0.71B0.29)PO4, was synthesized by a high-temperature solid-state reaction method. The crystal structure is isostructural with the tetra­gonal high-cristobalite structure with space group P which is built from alternating Ga(B)O4 and PO4 tetra­hedra inter­connected by sharing the common O-atom vertices, resulting in a three-dimensional structure with two-dimensional six-membered-ring tunnels running along the a and b axes

    Cerium(III) dihydroxidohexa­oxidotetra­borate chloride

    Get PDF
    The crystal structure of the title compound, Ce[B4O6(OH)2]Cl, is built from polyborate sheets parallel to the (001) plane. These sheets stack along the [001] direction and are linked by Ce atoms exhibiting an CeO8Cl2 coordination sphere. O—H⋯O and O—H⋯Cl hydrogen bonds additionally stabilize the structural set-up. The polyborate sheet is made up of zigzag borate chains running along the [10] direction. These zigzag chains are inter­connected by shared O-vertices, resulting in a two-dimensional layer with nine-membered rings. All B and O atoms (except for the terminal OH atoms) lie in the nearly planar sheets of polyborates, leading to their isotropic atomic displacement parameters being significantly smaller than usual. This may be attributed to the fact that the atomic displacement parameters correlate not only with their atomic masses but with their coordination environments also

    Lithium manganese(II) diaqua­boro­phosphate monohydrate

    Get PDF
    The title compound, LiMn(H2O)2[BP2O8]·H2O, is built up of an open framework of helical borophosphate ribbons inter­connected by MnO4(H2O)2 octa­hedra, forming one-dimensional channels along [001] occupied by Li+ cations and disordered H2O mol­ecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices

    Ammonium iron(III) phosphate(V) fluoride, (NH4)0.5[(NH4)0.375K0.125]FePO4F, with ammonium partially substituted by potassium

    Get PDF
    The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octa­hedra via shared F-atom corners, and are linked by PO4 tetra­hedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F)

    Tetra­aqua­tetra­manganese(II) catena-[germanodihydroxidodi(hydrogen­phosphate)diphosphate]

    Get PDF
    The title compound, Mn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2], was synthesized by the solvothermal method. Its crystal structure is isotypic with the iron and cobalt analogues [Huang et al. (2012 ▶). Inorg. Chem. 51, 3316–3323]. In the crystal structure, the framework is built from undulating manganese phosphate sheets parallel to (010) inter­connected by GeO6 octa­hedra (at the inversion center), resulting in a three-dimensional network with eight-membered ring channels into which all the protons point. The undulating manganese phosphate sheet consists of zigzag manganese octa­hedral chains along [10-1], built from MnO4(OH)(OH2) octa­hedra and MnO5(OH2) octa­hedra by sharing their trans or skew edges, which are inter­connected by PO3(OH) and PO4 tetra­hedra via corner-sharing. The crystal structure features extensive O—H⋯O hydrogen-bonding inter­actions

    Synthesis, Crystal Structure, and Infrared Spectroscopy of a novel hydronium trihydrate hybrid compound: (C6H22N4)2H9O4CdCl6CdCl5Cl2

    Get PDF
    A 0-dimensional (0D) hybrid compound, (C6H22N4)2H9O4CdCl6CdCl5Cl2 has been prepared by a facile conventional evaporation method. The crystal packing of discrete constituents of [Cd(1)Cl6] octahedra, [Cd(2)Cl5] trigonal bipyramids, Cl– ions, protonated tris(2-aminoethyl)amine molecules ([(C2H7N)3NH]4+) and H9O4+ ions, is stabilized by diverse hydrogen bonds of N-H···Cl, C-H···Cl and C-H···O. Uncommonly, an isolated chlorine ion (i.e. Cl(4)) is fixed at a special position at 12c(3.) by hydrogen bonds from four surrounding hydrogen atoms at a trigonal pyramidal configuration whereas other chlorine atoms Cl(1), Cl(2) and Cl(3) are stabilized by hydrogen bonds from 2, 2 and 3 hydrogen atoms at bifurcated, linear and trigonal configurations, respectively. The ordered arrangement of [Cl(4) [Cl(4)···H4] trigonal pyramidal configuration upward or downward is responsible for the long c-axis of the title compound. Additionally, a H9O4+ ion is entangled with symmetry restriction and half occupancy. All these features of the title compound add our new knowledge about hydrogen bonds

    KSn4(PO4)(3)

    Get PDF
    The crystal structure of potassium tetratin(Ⅱ) tris(orthophosphate), KSn4(PO4)(3), obtained by hydrothermal synthesis, has been determined from single-crystal X-ray diffraction data. The structure consists of [Sn4(PO4)(3)] units sharing common corners, which leads to a three-dimensional network structure and generates cages along the c direction. The cages are occupied by K atoms on threefold axes
    corecore