5 research outputs found

    Synthesis and Characterization of Reduced Graphene Oxide/ Polyaniline/Au Nanoparticles Hybrid Material for Energy Applications

    Get PDF
    In this work, synthesis and characterization of reduced graphene oxide/polyaniline/Au nanoparticles (GO/PANI/NpAu) as a hybrid capacitor are presented. Graphite oxide (GO) was synthesized by a modified Hummer’s method. Polyaniline was synthesized by chemical polymerization, and Au nanoparticles (NpAu) were added afterward. Fabrication of the electrodes consisted on the hybrid materials being deposited on carbon cloth electrodes. The chemical and structural properties of the electrode were characterized by high-resolution scanning electron microscopy (HRSEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-R), and Raman spectroscopy; the results confirm the graphene reduction, the covalent functionalization, and formation of nanocomposites and also show the polyaniline grafted graphene. The performance and evaluation of the electrodes based on grapheme oxide (GO), polyaniline (PANI), GO-PANI, and GO/PANI/NpAu nanocomposites over carbon cloth, stainless steel, and copper have been obtained in 1 M H2SO4 solution, using electrochemical techniques namely: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). They showed that GO/PANI/NpAu gave higher specific capacitance (SC) and energy values than PANI, and GO/PANI, in the order of 160 F/g. The present study introduces new hybrid material for energy applications, from the evaluation of their electrical contributions

    MEDIOS POROSOS: SIMULAICON Y FENOMENOLOGIA CAPILAR

    No full text

    Recent developments in polymer recycling: en gamma rays: technology applications and health implications

    No full text
    Gamma-rays originate from the decay of excited states of the atomic nuclei in a similar manner as the visible light originates from the decay of the atom itself. Gamma rays belong to the class of ionizing radiation, together with alpha rays (doubly ionized atoms of helium) and beta rays (electrons). The spectroscopy of gamma rays, having the unique feature that by photoeffect transform their total energy to the energy of electrons in the detection material, contributed decisively to the establishing of the decay schemes of atomic nuclei. Strong sources of gamma radiation are widely used in contemporary technologies for cancer treatment, material modification, medical imaging, and food sterilization. The main goal of this book is to present to the non-specialist reader the contemporary applications of gamma rays by selected chapters on that issue. This book has 16 selected chapters from basic application of gamma rays to applied issues like food sterilization and polymer modification

    Waste and recycled materials and their impact on the mechanical properties of Construction Materials

    No full text
    In a world increasingly fixated on the demands of sustainable development, too much attention has been focused on the widely used building materials, mainly on those tools and strategies for their reuse and those characteristics for considering them as environmental-friendly materials. Among the strategies are the following: (a) increased reliability on waste and recycled materials—such action will have to incorporate the substitution of recycled for virgin materials; (b) improved durability through reduction of materials needed for their replacement; and (c) improved mechanical properties, which reduces the use of raw materials. Extensive research and development activities in recycling composite materials have been conducted, and various technologies have been developed: (a) mechanical recycling, (b) thermal recycling, and (c) chemical recycling. However, gamma radiation is an innovative and clean technology, alternative to conventional recycling procedures. Gamma irradiation has proved to be an adequate tool for modifications of the physicochemical properties of polymers, through different effects: (a) scission, branching as well as cross-linking of polymer chains and (b) oxidative degradation. Moreover, the reuse and recycling of waste materials and the use of gamma radiation are useful tools for improving the mechanical properties of concrete. In this chapter, we show results of the effects of gamma irradiation on the physicochemical properties of waste and recycled materials and their reuse to enhance the properties of construction composite materials
    corecore